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Modeling processes are carried out in the mineral industry as well as in many areas depending on the development of computer technologies and 
software. Discrete Element Method (DEM) is used in modeling studies to explain the interaction of particles with other particles and communica-
tion equipment. The DEM provides the capability to simulate the movement of the granular media in a series of computational processes of each in-
dividual particle that consists of the granular media. It is becoming increasingly widely used to predict energy consumption, wear, particle breakage 
and particle size distribution in crushing and grinding processes that can be described in terms of granular materials using DEM. The selection of 
particle breakage models used by commercial software for modeling DEM particle breakage is important. In this study, it is summarized the studies 
have been carried out to understand the performance of particle breakage methods, which are Bonded Particle Model (BPM), Fast Breakage Model 
(FBM) and Particle Replacement Model (PRM), in the modeling of comminution equipment. In addition, the relationship between particle and 
breakage energies and theory of applied forces are described in detail for three breakage models existing in commercial DEM simulators
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Introduction

In industrial scale processing operations, size reduction is 
carried out by crusher and tumbling mills with rod/ball-autoge-
nous/semi-autogenous grinding technologies. In plants, energy 
consumption during the grinding stage can be up to 80-90% of 
total energy consumption (Jeswiet and Szekeres, 2016). Modeling 
studies are carried out to reduce energy consumption in grinding. 
It has been proven that modeling size reduction processes with 
Discrete Element Method (DEM) are a useful technique for pre-
dicting wear, particle breakage and particle size distribution in 
addition to energy consumption.

The DEM was first proposed by Cundall and Strack (1979) as a 
numerical model to define the mechanical behavior of spheres or 
discs. The use of this method has become increasingly widespread 
in processes such as rock mechanics, crushing and grinding, 
which can be expressed in terms of granular materials, with the 
idea that particle motions explain the motion of the whole mass. 
In granular media, particles that move independently from each 
other and interact only at their contact points affect the behavior 

of the media. In granular media, DEM utilizes Newton’s laws of 
motion for the motion of individual particles and contact laws for 
the contact between particles (Weerasekara et al., 2013).

In DEM, the motion of the particles is found by a series of cal-
culations that follow the contact forces and the displacement of 
the particles during the collision. First, it is verified whether the 
particles are in contact with each other for particles i and j with 
radius Ri and Rj, respectively;
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𝑅𝑅" + 𝑅𝑅$ > 𝐷𝐷                (1) 

Where, D is the distance between the centers of the two particles. A spring and dashpot pair mechanism 
is assumed at each contact point. These pairs form the normal and tangential force components. In the 
tangential direction, there is also a sliding mechanism (Figure 1) (Cundall and Strack, 1979). Of these 
components, the Hertz model (Hertz, 1982) represents for the normal force component and the Mindlin 
model (Mindlin, 1949) for the tangential force component. Normal force; 

𝐹𝐹( = −𝑘𝑘(∆𝑥𝑥 + 𝐶𝐶(𝑣𝑣(               (2) 

Silinmiş: Discrete Element Method, 

Silinmiş: Fig

   (1)

Where, D is the distance between the centers of the two par-
ticles. A spring and dashpot pair mechanism is assumed at each 
contact point. These pairs form the normal and tangential force 
components. In the tangential direction, there is also a sliding 
mechanism (Figure 1) (Cundall and Strack, 1979). Of these com-
ponents, the Hertz model (Hertz, 1982) represents for the normal 
force component and the Mindlin model (Mindlin, 1949) for the 
tangential force component. Normal force;
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where ∆x is amount of overlap, kn is the stiffness in the nor-
mal direction and Cn is the normal damping coefficient. kn∆x is the 
spring mechanism and Cnvn is the dashpot mechanism. The Cn value 
is derived from the coefficient restitution (ε), which is the ratio of 
the particle velocities before and after the collision (Cleary, 1998).
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with the geometry, and a series of time steps that depend on their position. After each time step, the 
position and contacts of the particles and geometry are updated. This process continues until all time 
steps are completed (Figure 2) (EDEM, 2023). 
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DEM was first used in mineral processing to model various 
mills with the assumption that particle motions explain the motion 
of the whole mass. Firstly, Mishra and Rajamani (1992) and Mishra 
and Rajamani (1994) used DEM to predict the media motion in 
ball mills in 2D. After that, Rajamani and Mishra (1996) also used 
DEM to describe particle motion in 2D semi-autogenous mills. As 
the application of DEM in 3D increases the accuracy of predictions, 
the use of DEM in different types of mills has increased significant-
ly (Bian et al., 2017; Cleary, 1998; Cleary, 2001a; Cleary, 2001b; 

Cleary et al., 2003; Cleary, 2015; Datta and Rajamani, 2002; Djord-
jevic, 2005; Herbst and Nordell, 2001; Jayasundara et al., 2012; 
Morrison et al., 2009; Powell et al., 2011; Wang et al., 2012).

In modeling crushers with DEM; many researchers have stud-
ied it to define cone crushers (Delaney et al., 2015; Lichter et al., 
2009; Quist and Evertsson, 2016), pressure crushers (Cleary and 
Sinnott, 2015; Refahi et al., 2010) and HPGR (Barrios and Tava-
res, 2016). The particle breakage mechanism of different types of 
crushers is also different. For the use of DEM in crushers, particle 
breakage is required to be included in the model. There are main 
three methods used by commercial software to simulate particle 
breakage in DEM: Bonded-Particle Model (BPM), Fast Breakage 
Model (FBM) and Particle Replacement Model (PRM). In the pres-
ent work, the theory of these three models describing particle 
breakage were investigated in detail. According to the results of 
the investigation, the applicability of these models in comminu-
tion processes was determined.

1. Particle breakage models
1.1. Bonded Particle Model (BPM)

The BPM developed by Potyondy and Cundall (2004) aimed to 
simulate the mechanical behavior of rock by representing it as a 
cemented granular material. A system is developed with non-uni-
formly sized spherical particles connected to each other at the con-
tact points. The mechanical behavior of this system is described 
by the motion of each particle and the force and moment acting 
at each contact. The interconnected particles are called fraction 
particles and the resulting cluster is called meta particles. In this 
study, they proposed a numerical model represented by a pack-
ing of dense spherical or circular particles that are tightly bonded 
together at the contact points and whose mechanical behavior is 
simulated by DEM using the two- and three-dimensional discon-
tinuous programs PFC2D and PFC3D. Breakage was presented 
by broken bonds. It was found that particle size has a significant 
effect on the breaking strength of a material. In addition, similar 
results were obtained for their mechanical behavior.

A critical part of BPM is the determination of the size of the 
spheres that form the meta particle, also referred to as the par-
ent particle. These include normal distributions (Antonyuk et al., 
2006), mono size (Metzger and Glasser, 2012) and bi-modal (Quist 
and Evertsson, 2016) distributions (Figure 3).

Figure 3. Schematic presentation of three types of packaging structures 
(Quist and Evertsson, 2016)

Figure 4. Illustration of BPM forces and moments (Potondy and Cundall, 
2004)
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Quist and Evertsson (2016) simulated an industrial size cone 
crusher with a BPM with a bimodal particle distribution. They ver-
ified the simulation results with single particle breakage experi-
ments. They determined that throughput, power, pressure and 
particle size distribution can be predicted using the BPM. Unfortu-
nately, this process increases the computational workload consid-
erably. The results are obtained in accordance with the results of 
the analytical models developed by Evertsson (2000).

1.2. Fast Breakage Model (FBM)

Potapov and Campbell (1996) proposed a model including 
polyhedral particles, called FBM. The paper described the exten-
sion of the existing two-dimensional technique to three dimen-
sions in order to simulate the breakage of brittle solids. In this way, 
a fault can spread uniformly through the simulated material. The 
breakage occurred on a simulated particle formed by gluing poly-
hedral particles together with bonds between fitting parts. FBM is 
an instantaneous breakage model that utilizes Laguerre-Voronoi 
tesselation to break the particle into 2D polygonal or 3D polyhe-
dral at the initial moment when the total energy of the collision is 
greater than the energy required for breakage (Jiménez-Herrera et 
al., 2018) (Figure 5).

The FBM has been used to describe breakage in the particle 
bed (Paluszny et al., 2016; Potapov and Campbell, 2000) and to 
simulate comminution equipment (Herbst and Potapov, 2004; 
Lichter et al., 2009). In comparing this model with two other 
breakage models, Jiménez-Herrera et al. (2018) reported that 
the FBM describes the interaction between the particle bed and 
the dropping ball very well, but is limited in describing the par-
ticle size distribution as well as the measured force deformation 
caused by single particle breakage. Moreover, mass conservation 
and the possibility of generating irregularly shaped particles have 
made the FBM a potentially powerful model for simulating large-
scale communication systems (Jiménez-Herrera et al., 2018).

Lichter et al. (2009) simulated different cone crushers utiliz-
ing DEM’s FBM breakage model to determine the flow rate, ener-
gy consumption and particle size distribution of the product. The 
approach, referred to currently as FBM, combines DEM compo-
nents with Population Balance Modeling (PBM) components. The 
PBM method used 3D polyhedral particles. The contact energy of 
the particle is sufficient to break the particle and the particle is 
instantly broken into smaller sizes, the size distribution of which 
is calculated by PBM. According to the results of the study, the 
outputs were obtained in agreement with the experimental data 
(Figure 6).
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Figure 6. Simulated and experimental particle size distributions - HP100 
Model (Right), B90 Model (Left) (Lichter et al., 2009)

The Vogel and Peukert model is based on a generalized di-
mensional analysis approach proposed by Rumpf (1973) and a 
detailed breakage mechanics model based on Weibull statistics 
(1951). The breakage probability P(E) is expressed in Equation 
8 by combining these two different approaches in the Vogel and 
Peukert model (Vogel and Peukert, 2005).
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The FBM has been used to describe breakage in the particle bed (Paluszny et al., 2016; Potapov and 
Campbell, 2000) and to simulate comminution equipment (Herbst and Potapov, 2004; Lichter et al., 
2009). In comparing this model with two other breakage models, Jiménez-Herrera et al. (2018) reported 
that the FBM describes the interaction between the particle bed and the dropping ball very well, but is 
limited in describing the particle size distribution as well as the measured force deformation caused by 
single particle breakage. Moreover, mass conservation and the possibility of generating irregularly 
shaped particles have made the FBM a potentially powerful model for simulating large-scale 
communication systems (Jiménez-Herrera et al., 2018). 

Lichter et al. (2009) simulated different cone crushers utilizing DEM's FBM breakage model to determine 
the flow rate, energy consumption and particle size distribution of the product. The approach, referred 
to currently as FBM, combines DEM components with Population Balance Modeling (PBM) components. 
The PBM method used 3D polyhedral particles. The contact energy of the particle is sufficient to break 
the particle and the particle is instantly broken into smaller sizes, the size distribution of which is 
calculated by PBM. According to the results of the study, the outputs were obtained in agreement with 
the experimental data (Figure 6). 
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where E′cum is the energy deposited in the grain just before the 
moment of stress, E is the total specific energy of the collision in 
an impact event. S, di,ref, emin,ref and di are the model parameters that 
define the breaking strength of the material, the reference size, the 
minimum energy required to break this reference size and the par-
ticle size, respectively.

1.3. Particle Replacement Model (PRM)
First proposed by Cleary (2001a and 2001b) to describe par-

ticle breakage in DEM, PRM is an instantaneous (over a period of 
time) replacement of particles with smaller sized progeny when 
the particles achieve the breakage requirement. Using PRM, the 
product size can be defined and a target size distribution can be 
obtained. Several studies have been conducted in which the parti-
cle can be a sphere or cluster sphere (Åström and Herrman, 1998; 
Barrios et al., 2020; Cleary, 2001b; Cleary and Sinnott, 2015; Tava-

res et al., 2021), superquadric (Delaney et al., 2015) or polyhedral 
cell (Arruda Tino and Tavares, 2022; Chen et al., 2024; Tavares et 
al., 2020) and is replaced by smaller particles of the same or differ-
ent shape by breakage.

PRM is implemented in the Tavares UFRJ Fracture Model, 
which is available as a breakage model in Altair EDEM. In the mod-
el, the main condition for a particle to break and be replaced by its 
fragments is that the specific impact energy must be higher than 
the specific breaking energy of the particle. In Figure7, each parent 
particle is removed from the simulation when breakage occurs and 
replaced by a group of smaller sized particles. The majority of PRM 
utilizes spheres as the replacement particles for computational ef-
ficiency. The main drawback, however, is the mass loss that occurs 
when a large sphere is replaced by several smaller spheres. To ob-
tain a breakage result close to a real breakage result, the spheres 
inside the parent particle are organized so that the largest spheres 
overlap in the direction perpendicular to the stress that caused 
the breakage. The remaining smaller spheres are then arranged in 
the remaining spaces, usually overlapping with the larger spheres. 
During replacement, the spheres are initially allowed to overlap 
in order to fill the volume of the original parent particle. But this 
overlap can be significant sufficient to lead to large artificial re-
pulsive forces between them. A further reason for the unrealistic 
results of the simulation is mass loss (Jiménez-Herrera et al., 2018; 
Tavares and Chagas, 2021; Tavares et al., 2021).

Figure 7. Schematic presentation of PRM; (a) main particle (b) particle re-
placement by size distribution (c) image after applying force (EDEM, 2023)

The potential explosions between the spheres are controlled 
by applying a dumping approach to limit the total contact force 
applied to each sphere (global damping strength) and also the 
time for which the reduced force is applied (global dumping time). 
Thus, part of the overlap can be defined in such a way that part 
of the breakage energy is released back into the particles (local 
damping strength). This method provides the possibility to con-
trol the kinematics of the particles and prevents the appearance of 
excessively high velocities of the particles, which would make the 
simulations unrealistic. In addition, in order to eliminate mass loss 
and provide accurate size distributions when generating realistic 
simulations, a size class called dummy particles is created, which 
defines particles up to 1/5 of the main size. Particles in this dum-
my size class are not allowed to break (EDEM, 2023).

The size, average value and standard deviation of each particle 
are assigned a specific breakage energy. This energy is determined 
according to the distribution given by Tavares and King (2002).
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where P(E) is the probability of breakage or cumulative distri-
bution, E is the particle breakage energy distribution correspond-
ing to the maximum stress energy it can endure in a collision, Emax 
is the upper cut-off value of the distribution, and E50 and σ are the 
median and standard deviation of the distribution, respectively. 
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The upper cut-off value is usually represented by the ratio Emax/
E50. When this ratio is equal to infinity, E* = E and Equation 10 
becomes the lognormal distribution. Another parameter that af-
fects the breakage probability is the particle size. The relationship 
between particle size and average breakage energy (Tavares and 
King, 1998; Tavares, 2022);
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reason for the unrealistic results of the simulation is mass loss (Jiménez-Herrera et al., 2018; Tavares 
and Chagas, 2021; Tavares et al., 2021). 

 
Figure 7. Schematic presentation of PRM; (a) main particle (b) particle replacement by size distribution (c) image after 

applying force (EDEM, 2023) 

The potential explosions between the spheres are controlled by applying a dumping approach to limit 
the total contact force applied to each sphere (global damping strength) and also the time for which the 
reduced force is applied (global dumping time). Thus, part of the overlap can be defined in such a way 
that part of the breakage energy is released back into the particles (local damping strength). This method 
provides the possibility to control the kinematics of the particles and prevents the appearance of 
excessively high velocities of the particles, which would make the simulations unrealistic. In addition, in 
order to eliminate mass loss and provide accurate size distributions when generating realistic 
simulations, a size class called dummy particles is created, which defines particles up to 1/5 of the main 
size. Particles in this dummy size class are not allowed to break (EDEM, 2023). 

The size, average value and standard deviation of each particle are assigned a specific breakage 
energy. This energy is determined according to the distribution given by Tavares and King (2002). 
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where P(E) is the probability of breakage or cumulative distribution, E is the particle breakage energy 
distribution corresponding to the maximum stress energy it can endure in a collision, Emax is the upper 
cut-off value of the distribution, and E50 and σ are the median and standard deviation of the distribution, 
respectively. The upper cut-off value is usually represented by the ratio Emax/E50. When this ratio is equal 
to infinity, E* = E and Equation 10 becomes the lognormal distribution. Another parameter that affects 
the breakage probability is the particle size. The relationship between particle size and average 
breakage energy (Tavares and King, 1998; Tavares, 2022); 
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where E∞, d0 and ϕ are model parameters to be determined by experimental data and di is the 
representative size of particles in size class i. kp is the particle stiffness, ks is the Hertzian stiffness of 
the surface in contact with the particle. The stiffness of a particle is significantly smaller than the stiffness 
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experimental data and di is the representative size of particles in 
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the surface in contact with the particle. The stiffness of a particle is 
significantly smaller than the stiffness of the surface of the testing 
machine or equipment in contact with the particle. In some cases, 
however, this is not the case, so a correction must be used. The 
strain energy, e, involved in an event used to deform the particle is 
given by (Tavares, 2022).
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e is expressed as the ratio of the energy involved in a collision and distributed to the particles according 
to their stiffness. In the case of two particles of the same material in collision, Equation 13 gives e=0.5, 
since the energy is shared equally between them. 

In a collision, when the specific strain energy is smaller than the breakage energy of the particle, the 
particle would not break, but would maintain internal fault-like damage that would make it more fracture 
prone in a future tensile phenomenon. This damage is described on the basis of a model based on 
continuous damage mechanics in which the specific breakage energy of the particle is reduced (Figure 
8) (Tavares and King, 2002; Tavares, 2009); 
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where E΄ is the breakage energy of the particle after the collision phenomena, D is the damage exposed 
to the particle after a contact that does not lead to breakage. e΄ is the specific energy involved in the 
additional collision (or effective impact energy) and γ is the damage accumulation coefficient, which 
characterizes the damage tolerance of a material before breakage. Equation 15 can be calculated 
iteratively, starting with D = 0. 

 
Figure 8. Illustration of the failure effect of particles caused by damage accumulation during repeated loading phenomena 

(Tavares, 2009) 

The breakage level of particles can be expressed by a single parameter, t10, which represents the ratio 
of particles finer than 1/10 of the parent particle size (Napier-Munn et al., 1996). Tavares (2009) stated 
the relationship between the specific tensile energy and the average breakage energy of particles in 
Equation 16. 
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where A and b′ are the model parameters obtained from the single particle breakage data and E50b is 
the median breakage energy of the broken particles. In the case of the primary breakage function, where 
the ratio eEk/E50b can be assumed to be equal to one, Eq. 16; 

𝑡𝑡Ey = 𝐴𝐴 1 − exp	(−𝑏𝑏i)              (17) 

The total particle size distribution is; 
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contact that does not lead to breakage. e΄ is the specific energy in-
volved in the additional collision (or effective impact energy) and 
γ is the damage accumulation coefficient, which characterizes the 
damage tolerance of a material before breakage. Equation 15 can 
be calculated iteratively, starting with D = 0.

Figure 8. Illustration of the failure effect of particles caused by damage 
accumulation during repeated loading phenomena (Tavares, 2009)

The breakage level of particles can be expressed by a single 
parameter, t10, which represents the ratio of particles finer than 
1/10 of the parent particle size (Napier-Munn et al., 1996). Tava-
res (2009) stated the relationship between the specific tensile en-
ergy and the average breakage energy of particles in Equation 16.
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where A and b′ are the model parameters obtained from the 
single particle breakage data and E50b is the median breakage en-
ergy of the broken particles. In the case of the primary breakage 
function, where the ratio eEk/E50b can be assumed to be equal to 
one, Eq. 16;
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The total particle size distribution is;
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where x is the cumulative mass (tn) of the particles passing through the sieve of the corresponding size, 
calculated from the given distribution value t10, αn and βn are the parameters of the model for the chosen 
values of tn. 

PRM has been studied to simulate particle bed breakage and single particle breakage processes 
(Arruda Tino and Tavares, 2022; Barrios et al., 2015; Barrios et al., 2020; Jiménez-Herrera et al., 2018; 
Tavares et al., 2020; Tavares et al., 2021; Tavares and Chagas, 2021). 

Tavares and Chagas (2021) described the simulation of particle breakage using DEM and proposed a 
stochastic-randomized approach to produce realistic size distributions. In the study, a family of spherical 
particles for various values of t10 was created to represent the breakage of spherical particles simulated 
using DEM, based on data obtained from weight reduction tests. It is emphasized that the proposed 
model is successful in simulating the breakage of particles and is successful to generate real size 
distributions. A similar study was performed by Tavares et al. (2021) in the updated version of EDEM 
and again showed a strong performance in predicting particle breakage. In addition to these studies 
using EDEM, Tavares et al. (2020) and Arruda Tino and Tavares (2022) simulated particle breakage 
using polyhedral particles instead of spherical particles using Rocky DEM commercial software. 

Arruda Tino and Tavares (2022) showed in their study that the results of the JK drop weight test, Los 
Angeles abrasion test and Bond breakage tests can be predicted by simulating them with DEM using 
polyhedral particles and Voronoi tessellation in the PRM. Comparison of experimental JK drop weight 
test results with its simulations revealed that the simulation is sensitive to the variables. It was found 
that there was good agreement for copper ore and granulite, but deviation for limestone. Considering 
the predictions of the breakage amenability parameter A*b, it overestimated the experimentally obtained 
values. 

Tavares et al. (2020) reported that their model was able to accurately predict the breakage probability 
and particle size distribution for single and multiple impact cases. The simulation results were also 
analyzed for sensitivity to the coefficient restitution and it was observed that the contact parameter had 
a limited effect on the simulation results. It was also shown that as the number of layers increases, the 
amount of broken material is reduced in hard copper ore and the amount of broken material is increased 
in soft limestone. 

Barrios et al. (2020) simulated particle breakage with a replacement model implemented in the EDEM 
commercial software. The model predicted some parameters based on single particle breakage tests 
on iron ore pellets. The predictions of the model were compared with results of experiments and showed 
agreement both in terms of the breakage probability and the particle size distribution obtained as a result 
of compression and impact. Figure 9 shows the results of experiments and simulations for the collision 
of a 3-layer particle bed with an 88 mm steel ball having an impact energy of 10 J. Figure 9 illustrates 
the generation of new particles as well as the expulsion of particles. The color in the images of 
simulations indicates the velocity at which the particles are thrown. The times are displayed in terms of 
t = 0, corresponding to the moment of contact of the dropped ball with the top of the particle bed. 
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performance in predicting particle breakage. In addition to these 
studies using EDEM, Tavares et al. (2020) and Arruda Tino and 
Tavares (2022) simulated particle breakage using polyhedral par-
ticles instead of spherical particles using Rocky DEM commercial 
software.

Arruda Tino and Tavares (2022) showed in their study that 
the results of the JK drop weight test, Los Angeles abrasion test 
and Bond breakage tests can be predicted by simulating them with 
DEM using polyhedral particles and Voronoi tessellation in the 
PRM. Comparison of experimental JK drop weight test results with 
its simulations revealed that the simulation is sensitive to the vari-
ables. It was found that there was good agreement for copper ore 
and granulite, but deviation for limestone. Considering the predic-
tions of the breakage amenability parameter A*b, it overestimated 
the experimentally obtained values.

Tavares et al. (2020) reported that their model was able to ac-
curately predict the breakage probability and particle size distri-
bution for single and multiple impact cases. The simulation results 
were also analyzed for sensitivity to the coefficient restitution and 
it was observed that the contact parameter had a limited effect on 
the simulation results. It was also shown that as the number of 
layers increases, the amount of broken material is reduced in hard 
copper ore and the amount of broken material is increased in soft 
limestone.
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Barrios et al. (2020) simulated particle breakage with a replace-
ment model implemented in the EDEM commercial software. The 
model predicted some parameters based on single particle break-
age tests on iron ore pellets. The predictions of the model were com-
pared with results of experiments and showed agreement both in 
terms of the breakage probability and the particle size distribution 
obtained as a result of compression and impact. Figure 9 shows the 
results of experiments and simulations for the collision of a 3-layer 
particle bed with an 88 mm steel ball having an impact energy of 10 
J. Figure 9 illustrates the generation of new particles as well as the 
expulsion of particles. The color in the images of simulations indi-
cates the velocity at which the particles are thrown. The times are 
displayed in terms of t = 0, corresponding to the moment of contact 
of the dropped ball with the top of the particle bed.

Figure 9. Comparison of snapshots of the experiment and DEM simulation of 
unconfined particle bed impact tests using Impact load cell (Barrios et al., 2020)

Jiménez-Herrera et al. (2018) compared three different parti-
cle breakage models in the commercial DEM simulators for mod-
eling the particle bed. It was found that BPM is ideal because it can 
describe the force-deformation profile and the interaction with 
the ball dropped on the bed particles, but it cannot represent the 
material breakage distribution. FBM and PRM, on the other hand, 
could not adequately describe the force-deformation profile. The 
model patterns of BPM, PRM and FBM before, during and after sin-
gle particle breakage simulation were analyzed and the results of 
the particle breakage simulation are shown in Figure 10. At BPM, 
the progression of breakage is apparent, following the breaks of the 
bonds. In the FBM plot, both the first breakage of the main particle 
and the following breakage of the progeny particles are shown, re-
vealing the irregular shape of the particles. Figure 10 also shows 
two different moments after a particle reached the critical load for 
breakage in the PRM plot, revealing the very strong overlap that 
should be allowed in this model instantly after breakage.

Figure 10. Schematic comparison of breakage models (Jiménez-Herrera et 
al., 2018)

There are some studies using PRM to model different commi-
nution equipment such as HPGR (Barrios and Tavares, 2016; Ro-
driguez et al., 2021), cone crushers (Delaney et al., 2015), com-
pression crushers (Cleary and Sinnott, 2015).

Cleary and Sinnott (2015) simulated the flow and breakage 
of material as it passes through the breakage chamber using the 
PRM breakage model of the DEM proposed by Cleary (2001a 
and 2001b) to study jaw, cone, gyratory, impact and double roll 
crushers. Using PFC3D software, energy, particle size, throughput 
and wear were estimated for the crushers. Figure 11 shows the 
breakage model of the collision of two high-velocity particles in 
3D. The main particles in Figure 11a collide and distribute enough 
energy in the normal direction to break and then are replaced by 
the small particles in Figure 11b. These particles can then move in-
dependently (Figure 11c) and interact with other particles and the 
boundaries of the crusher, possibly breaking again if conditions 
are favorable.

Figure 11. Schematic comparison of breakage models (Cleary and Sinnott, 
2015)

Delaney et al. (2015) determined the flow and breakage pro-
cess in an industrial cone crusher with the PRM breakage model 
using non-spherical particles. In the simulations, the model was 
developed using non-spherical particles known as superquadrics 
instead of spheres to improve reality, but this resulted in compu-
tational limitations. The study simulated the performance of the 
cone crusher and predicted particle size distribution, throughput, 
energy consumption and liner wear. The wear distribution is af-
fected by the stress distribution and flow pattern and is different 
in the mantle and concave section. The wear is highest at the loca-
tion of the plug point of the crusher.

3. Conclusion

This work is summarized the studies have been carried out to 
understand the performance of particle breakage methods in the 
modeling of comminution equipment. In addition, the relationship 
between particle and breakage energies and theory of applied 
forces are described in detail for three breakage models existing 
in commercial DEM simulators. Each model has advantages and 
disadvantages and a general summary is presented below.

In the Bonded Particle Model (BPM), non-uniform particle, 
called meta-particles, are formed by connecting each other at the 
contact points and the problem of mass conservation is eliminated 
by high packing density. This method, is based on particle flow dy-
namics. Realistic results are obtained in simulation processes, but 
it requires high computational effort and is not suitable for a large 
number of particles. However, it describes the force-deformation 
profile well.

Fast Breakage Model (FBM) is an instantaneous breakage 
model that uses Laguerre-Voronoi tessellation to breakage poly-
hedral particles. This model produces irregular shapes particles 
and provides mass conservation. It is not suitable for particle size 
distribution estimation and requires high computation effort. Un-
like BPM, it does not describe the force-deformation profile well.
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Simulating breakage with Particle Replacement Model (PRM) 
is based on the replacement of the parent particle by progeny par-
ticles when a load is applied. In order to obtain close to realistic 
results, the particles are placed on top of each other to ensure 
mass conservation while placing the particles that will result from 
the breakage processes in the main particle volume. However, this 
high overlap causes artificial repulsion forces. This is controlled 
by a damping approach. It also uses dummy particles to ensure 
mass conservation. It is suitable for simulations with a large num-
ber of particles. It does not describe the breakage probability and 
force-deformation profile well.

In summary, three methods provide mass conservation by 
applying different methods. PRM offers faster results than other 
methods when using a large number of particles. However, the 
model that best describes the force-deformation profile is BPM.
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