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ABSTRACT: The environmental impacts of coal mining are many and diverse. However, coal is an essential 
source of energy in meeting the requirements of the existing and growing industries of a country. Damage to 
the environment is usually seen as an unavoidable consequence of maintaining national development It is also 
desirable to optimize and minimize environmental impacts by adopting proper mining techniques. Therefore, it 
is necessary to have quickly accessible, cost-effective, multi-temporal information regarding the area's envi­
ronmental status. Remote sensing technology affords a viable means of analyzing the changing conditions at 
mine sites. In this study, multi-temporal Landsat TM data sets from the Soma coal basin were subjected to a 
number of digital image processing techniques to assist in identifying and monitoring the environmental im­
pacts. The application of digital image processing proved to be an effective means of analyzing the multi-
temporal data set 

1 INTRODUCTION 

The environmental impacts of coal mining are many 
and diverse. Mining operations cause degradation of 
the land, loss of forest, topsoil and agricultural land, 
changes in topography and hydrologie conditions, 
and the pollution of useable surface and ground wa­
ter. However, coal is an essential source of energy İn 
meeting the requirements of the existing and growing 
industries of a country. Damage to the environment is 
usually seen as an unavoidable consequence of 
maintaining national development It is also desirable 
to optimize and minimize environmental impacts by 
adopting proper mining techniques, rapidly reclaim­
ing the already damaged parts and identifying the ar­
eas vulnerable to environmental damage in the near 
future. All these need quickly accessible, synoptic, 
cost-effective, multi-temporal information regarding 
the research area's environmental status (Chatterjee 
et al. 1994). 

Remote sensing technology affords a viable means 
of analyzing the changing conditions at mine sites. In 
addition, the information derived from these data 
provides a means of assessing environmental compli­
ance and can serve as evidence during litigation. 

The Soma coal basin, which has been subject to 
both open pit and underground mining for more than 
60 years, was chosen as the "case study area" for the 
present study. Multi-temporal Landsat TM data sets 
from the Soma coal basin were subjected to a number 

of digital image processing techniques to assist İn 
identifying and monitoring environmental impacts. 
Smce it was impossible to find geochemical data for 
the available satellite images, the research only dealt 
with the topographic and vegetation changes due to 
mining operations. 

2 RESEARCH AREA 

The Soma coal basin lies in the province of Manisa 
in western Turkey. It is 90 km from Manisa city 
center and 80 km from Balıkesir city center (Figure 
1 ). The average elevation of the basin from sea level 
İs around 160 m. The coal basin is composed of three 
main districts, namely, Soma, Deniş, and Eynez. In 
this study, southern open pit mines of Aegean Lignite 
Establishment (ELİ), one of the establishments of the 
state-owned Turkish Coal Enterprises (TKİ), were 
studied. 

461 



Lignite deposits from the Mesozoic, Tertiary 
(Miocene and Pliocene) and Quaternary ages are 
present in the area. Miocene lignite has been mined 
İn the area since 1939 by ELİ. The total reserve of 
the area is about 600 million tons, and annually 
about 10 million tons of lignite is mined from the 
open pitsofELt. 

3 DATA ACQUISITION AND METHODS 

3.1 Preparation of Ancillary Data 

The research area (15.6 km width by 19.8 km 
length) was determined from six topographic maps 
of the region (1,000-m Universal Transverse Mer-
cator grid, zone 35, international spheroid, scale 
1/25,000, printed in 1978) and then the topographic 
contour lines of this area were scanned using an A0-
sized scanner. Using eight GCPs for each map, six 
topographic maps were geo-referenced with the 
projective transformation method that is recom­
mended for scanned materials. To digitize the con­
tour lines, an on-screen digitizing method was used. 
In this method, a transparent layer is laid over the 
geo-referenced topographic maps, each topographic 
contour line is drawn using the mouse, and then the 
contour value is given. Using this method, 1079 
topographic contour lines were digitized with an in­
crement of 10-m contour lines. After the digitizing 
operation, the minimum contour value of the region 
was found to be 80 m, whereas the maximum con­
tour value of the region was 1210m. 

A digital elevation model (DEM) is a regularly 
spaced grid covering a surface area, with elevation 
values associated with each grid location. The DEM, 
therefore, provides a general model of the earth's 
surface which becomes more accurate as the dis­
tance between grid points decreases. Gridding pro­
duces a regularly spaced array of z (e.g., height) 
values from irregularly spaced xyz data. It does this 
by extrapolating or interpolating z values at the 
regularly spaced locations where the data is missing. 
In this research, using the ERMapper 6.1 software 
"gridding wizard", me DEM of the region was ob­
tained for 10-m pixel size. To increase the accuracy 
of the operation, spot heights of the region that are 
shown on the topographic maps were also digitized 
and used during the gridding operations. 

Any data shown in 2D can also be shown in 3D, 
provided a suitable height component can be used. A 
digital terrain model (DTM) of the region was ob­
tained using the ERMapper 6.1 software "3D algo­
rithm". This is shown in Figure 2. In this figure, red 
is used to indicate high locations, and blue to indi­
cate low locations. 

During this research, the drainage network of the 
region was digitized from the topographic maps. In 
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addition, the geology of the region was obtained 
from the General Directorate of Turkish Coal Enter­
prises and scanned using an A4 flatbed scanner. 
Then the map was geo-referenced and, using the on­
screen digitizing method, die geological units and 
faults of the region were digitized. 

Figure 2. DTM (3D view) of the Soma region. 

3.2 Image acquisition and preprocessing 

Landsat Thematic Mapper (TM) images of the area 
were acquired in the years 1989 and 1999 (path 181, 
row 33). Atmospheric correction of the Landsat TM 
images was necessary so that the change detection 
method employed in this investigation could be used 
(Singh 1989). During this research, the darkest ob­
ject subtraction method was used to correct atmos­
pheric effects. 

In order to analyze imagery from different dates, 
the data layers must be spatially co-registered so that 
the ground measurements and satellite data are in 
the same spatial reference frame. Image registration 
was carried out by locating a certain number of 
ground control points (GCPs) in both images. The 
latitude and longitude of the GCPs were determined 
from accurate base maps. The differences between 
the actual GCP locations and their positions in the 
image are used to determine the geometric transfor­
mations required to restore die image. A nearest-
neighbor algorithm was used to resample the cor­
rected images to 30-m pixel size, resulting in a 5.7-
m RMS error based on die GCPs. 

3.3 Image enhancement andxlassification 

After preprocessing of the satellite data, several im­
age enhancement methods were applied in order to 
differentiate die classes. After the visual interpreta­
tion of different band combinations, we were able to 
estimate most of the classes in me region. 

RGB32I: This algorithm is a natural color scene 
comprising Landsat TM bands 3, 2, and 1 (approxi­
mately equal to red, green, and blue visible light) 
imaged in the red, green, and blue computer monitor 
guns respectively. The composite is not totally natu­
ral because the Landsat TM bands do not exactly 
match the red, green, and blue spectral regions; 
bands 1 (blue visible) and 3 (red visible) have lower 
spectral ranges Üıan those which the eye recognizes 



as blue and red. This image looks partly realistic but 
there is an apparent absence of green vegetation. 
The "greenness" response of plants is not a very 
strong one (compare the reflectance of vegetation in 
the green visible range, 0.56 p.m., Landsat TM band 
2), but the human eye is most sensitive to green (it 
has many more cones sensitive to green) and there­
fore magnifies the response relative to blue and red. 
This image combination has lower spatial resolution 
due to band 1 and has limited spectral diversity since 
no reflected IR bands are used. Landsat TM 
RGB321 views of the Soma region (for both 1989 
and 1999) are shown in Figure 3. 

Figure 3. Landsat TM RGB321 views of the Soma region 
{1989 on the left, and 1999 on the right). 

RGB432: This algorithm is a false color image, 
usually referred to as standard false color. In this 
image, Landsat TM band 4 is assigned to the red 
layer, band 3 (0.66 um, visibİe red) İs in a green 
layer and band 2 (0.56 um, visible green) in a blue 
layer. The result of this RGB color composite İs that 
the high reflectance of vegetation (0.83 u.m, TM 
band 4) makes vegetation appear red; red features, 
such as Fe-rich soils appear green, while green fea­
tures appear blue. This false color image is generally 
the one used to evaluate a particular image for a va­
riety of resource-based applications. People inter­
ested in vegetation can see the location and density 
of vegetation; people interested in geology can make 
the same determination - and avoid the over-
vegetated images. This algorithm has moderate spa­
tial resolution, whereas it has limited spectral diver­
sity. Landsat TM RGB432 views of the Soma region 
(for both 1989 and 1999) are shown in Figure 4. 

Figure 4. Landsat TM RGB432 views of the Soma region 
(1989 on the left and 1999 on the right) 

RGB74I: This İs a false color image widely used 
for geological applications. Landsat TM band 7 is 
assigned to a red layer, band 4 to a green layer and 
band 1 to a blue layer. The advantage of the 
RGB741 algorithm is that we achieve better color 
separation, improving detail and information. A sec­
ond advantage is that certain mineral groups of in­
terest have distinctive spectral features İn Landsat 
TM bands 7,4 and 1. In band 1, iron-bearing miner­
als have low reflectance, whereas phyllosilicates, 
quartz, and other light-colored minerals have high 
reflectance. In band 7, phyllosilicates and carbonates 
have absorption features, whereas hematite and, to a 
lesser extent, goethite have higher responses. 
Therefore, the RGB741 composite allows a certain 
degree of lithological interpretation. Hematite-rich 
rock and soil is red, quartzites generally appear blue 
to blue-green because they are light in color and 
have no iron, while limestones generally appear pale 
blue or lavender because of the absorption of car­
bonate in band 7 and their general pale color (high 
in the blue gun of the computer monitor). Various 
cements and fracture fillings also add to the spectral 
responses. Fireburn scars, particularly recent ones, 
appear red and may be confused with hematite-rich 
areas. In mis algorithm, coal is generally purple, 
highly reflective surfaces are white, water is blue, 
and overburden is gray. Landsat TM RGB741 views 
of the Soma region (for both 1989 and 1999) are 
shown İn Figure 5. 

Figure 5 Landsat TM RGB741 views of the Soma region 
(1989 on the left and 1999 on the tight). 

RGB view of principal components (PC) 1,2,3: 
This algorithm generates PCI, PC2, and PC3 and 
displays them as an RGB image, which is generally 
used for alteration mapping. The principal compo­
nent analysis operation is a mathematical method to 
uncover relationships among many variables and to 
reduce the amount of data needed to define the rela­
tionships. With principal component analysis, each 
variable (input map) is transformed into a linear 
combination of orthogonal common components 
(output maps) with decreasing variation. The linear 
transformation assumes the components will explain 
all of the variance in each variable. Hence, each 
component carries different information that is un-
correlated with other components. Principal compo-
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nent analysis results in linear transformation of a set 
of (satellite) raster maps into a set of output raster 
maps, each explaining a common component in the 
input raster maps. The number of output raster maps 
is taken as identical to the number of input raster 
maps so as to enable the user to determine the actual 
amount of reduction. The output raster maps are 
listed in decreasing order of variance. This enables 
the reduction of maps because the last transformed 
maps have little or no variation left (they may be 
virtually constant maps), do not add significance to 
the common components, and may hence be dis­
carded. Principal component analysis can be used 
for several purposes, e.g., data compression, the pre­
processing procedure before classification of the 
data, and finding targets of interest. It is also possi­
ble to generate a PCI, PC2, and PC3 image using 
only Landsat TM bands 7, 4, 1 of the Landsat TM 
data. Since these bands show mineralogy, this can 
be a good image for highlighting geology. RGB 
view of Principal Components of Landsat TM Bands 
of 741 (1989) is shown in Figure 6. 

Figure 6. RGB view ot Principal Components of Landsat TM 
Bands of 741(1989). 

Landsat TM images over DTM: This operation 
drapes Landsat TM satellite imagery over DEM data 
to provide a combined view with height from the 
DEM and color information from the Landsat TM 
data. Since Landsat TM has a 30-meter ground 
resolution per pixel, this type of view is only good 
for large regional overviews. The research area (for 
both 1989 and 1999) was modeled in 3D using sat­
ellite imagery as shown in Figure 7. 

Vegetation NDVI: NDV1 (normalized difference 
vegetation index) is a commonly used vegetation in­
dex that transforms multi-spectral data into a single 
image band representing vegetation distribution. The 
NDVI values indicate the amount of green vegeta­
tion present in the pixel, where higher NDVI values 
indicate more green vegetation. NDVI values range 
from -1 to 1. Vegetated areas will generally yield 
high values because of their relatively high near-
infrared reflectance and low visible reflectance. In 
contrast, water, clouds, and snow have larger visible 

reflectance than near-infrared reflectance Thus, 
these features yield negative index values. Rock and 
bare soil areas have similar reflectance in the two 
bands and result in vegetation indices near zero. 

In this algorithm, red is used to indicate high 
NDVI values, and blue to indicate low NDVI val­
ues. Figure 8 shows die NDVI views of the Soma 
region (for both 1989 and 1999). 

1 igure 7 RÜB542 Landsat TM images of the Soma region 
over DTM (1989 on the top and 1999 on the bottom) 

Figure 8 NDVI views of the Soma region (1989 on ihetopand 
1999 on the bottom) 

In this figure, it is very easy to see the vegetation 
changes in the region. The mining area (blue area at 
the center of the images) changed rapidly over the 
10-year period (from 1989 to 1999) and a huge spa­
tial increment occurred in the mining area. In addi­
tion to this, an increment was also observed İn 
regions of high vegetation density (red-colored ar­
eas). GPS (Global Positioning System) measure­
ments made during field trips, maps of the Ministry 
of Forestry and data obtained from the General Di­
rectorate of Turkish Coal Enterprises confirmed 
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these changes. During tree plantation works started 
by the Ministry of Forestry in 1995, approximately 
25,000 pine trees were planted in the region, and the 
General Directorate of Turkish Coal Enterprises 
planted the landslide and old dumping sites. NDVI 
maps also showed the increment of the cultivated 
areas around Bakır Çay. Table 1 shows the classified 
NDVI values of the Soma region (308.88 km2). 

Table 1 Classified NDVI values of the Soma region. 
NDVI 

Lower Value 

0.8 

06 

04 

0.2 

0 

•02 

-0.4 

-0.6 

-0 8 

-10 

Upper Value 

1.0 

0.8 

0.6 

0.4 

02 

0 

-0.2 

-04 

-0.6 

-0.8 

1989 

(%) 
0.14 

7.58 

21.59 

26.60 

29 72 

12 35 

1.62 

0 29 

0.06 

0.05 

1999 

<%> 
8.62 

24 30 

21.31 

20.75 

17 17 

7 75 

006 

0.02 

0.01 

0 01 

CHANGE 

(%) 
8 48 

16 72 

-0 28 

-5.85 

-12 55 

-4 60 

-1.56 

-0 27 

-0 05 

-0.04 

As can be seen in the table, during the 10-year 
period (from 1989 to 1999), vegetated areas (having 
positive NDVI values) increased about 6.52% (ap­
proximately 20 km2), especially highly vegetated ar­
eas (NDVI values greater than 0.6) increased about 
25.2% (approximately 78 km2). These values sup­
port the increase in vegetation density and tree 
plantation works in the region. 

Detailed investigations conducted in the field 
showed that the calculated NDVI clearly depicted 
areas of dense vegetation. However, the applied in­
dex was not successful in separating areas with 
sparse vegetation. Mining areas are characterized by 
low levels of vegetation cover. Most of the mining 
sediments vary İn texture,' oxidation crusts, and 
coaly particle content. The color differs from light 
gray through mid and dark gray to black depending 
on the coal content. A low coal content has a strong 
influence on the color and therefore on the spectral 
reflectance. The brightness of the mining sediments 
has an impact on the vegetation index. In this study, 
we suspect that this is the reason for the unsatisfac­
tory results. The NDVI values were lower in the 
open pit mining areas than in the already reclaimed 
areas, even when both areas had the same type of 
vegetation and the same percentage cover. 

Classification: Unsupervised classification is of 
maximum utility in classifying images where limited 
field information İs available for accurate location of 
training sites or where a large number of spectral 
classes are present. Where numerous scenes are to 

be classified with few terrain classes of interest and 
where field information is available to assist train­
ing, a supervised classification is most suitable in 
mined-land applications (Rathore & Wright, 1993). 

In this study, the maximum likelihood method 
was chosen. This method is the most commonly 
used supervised classification method (Schmidt & 
Glaesser, 1998). This algorithm provided the most 
promising results. The maximum likelihood classifi­
cation assumes mat spectral values of training pixels 
are statistically distributed according to a 'multi­
variate normal probability density function'. For 
each set of spectral input values, the distance is cal­
culated towards each of the classes. If this distance 
is smaller than the user-defined threshold value, the 
class name with the shortest distance is assigned; 
otherwise, the undefined value is assigned. 

During this study, firstly, 30 control points for 
supervised classification were obtained in the field 
using Garmin 12-type hand GPS. After inspection of 
the photographs and camera views recorded during 
the field trips, using vegetation maps of the region 
obtained from the Ministry of Forestry, five main 
classes were determined in the area: mining area, 
forest, cultivated area, bare soil, and urban settle­
ment. Then, training sites that carry the characteris­
tic features of these classes were defined using the 
software. Each Landsat TM image had its own 
training sites. This was necessary because of the 
high temporal variability of the region. 

After the maximum likelihood classifier was ap­
plied for several band and data combinations, the re­
sults were compared with the ancillary data in order 
to assess the accuracy. Some classes could not be 
identified from Landsat TM data when using just 
some of the bands. Because of the spectral heteroge­
neity of the surface mine areas coupled with their 
spatial complexity, the spectral resolution achieved 
by using selected bands was not enough to classify 
all mine and reclaimed features with satisfactory ac­
curacy. The use of all Landsat TM bands (except 
band 6, i.e., the thermal band) gave the best results 
for all classes together. Land cover maps of the re­
gion, for both 1989 and 1999, were created (Figure 9 
and Figure 10 respectively). 

It was found that computer processing of data by 
itself was inadequate for accurate determinations of 
active mine boundaries or areas of coverage. This 
was primarily due to the fact that a number of other 
features such as road cuts, construction sites, and ag­
ricultural fields produced very similar signatures. 
Many features of small aerial extent (smaller than a 
Landsat TM pixel) were not extracted by the classi­
fication. Table 2 shows the results of the classifica­
tion of all classes and their temporal and spatial 
changes. 
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4 CONCLUSIONS 

Figure 9. Land cover map of the Soma region (1989). 

Figure 10. Land cover map of the Soma region (1999)-

Table 2. Results of classification. 

CLASS 

Bare Soil 
Cultivated 

Forest 
Mining 
Area 
Urban Set­
tlement 

1989 
Area 
(km2) 
101.35 

55.43 

103.33 

14.70 

34.07 

Ratio 
06) 
33.14 

17.86 

33.29 

4.74 

10.97 

1999 
Area 
(km-1) 
90.85 

18.23 

120.93 

41.00 

37.87 

Ratio 
(%) 
29.76 

5.87 

38.96 

13.21 

12.20 

CHANGE 
Area 
(km1) 
-10 50 

-37.20 

17 60 

26 30 

3.80 

Ratio 
1%) 
-3.38 

-11.99 

5.67 

8.47 

1.23 

As can be seen in the table, mining activities in the 
region increased about three times in the 10-year pe­
riod (from 1989 to 1999). During this period, bare 
soil decreased by about 10.5 km, whereas forest 
increased about 17.6 km due to the tree plantation 
work conducted by both the General Directorate of 
Turkish Coal Enterprises and the Ministry of For­
estry. Due to the mining activities and industrial de­
velopments in the region, urban settlement also in­
creased. Although it seems from the table that 
cultivated areas decreased dramaticaHy (by about 
11.99 km ), the figures show that most of the culti­
vated areas were changed into forestry. 

One of the most obvious and major impacts of sur­
face mining is severe land disruption and degrada­
tion. Periodic mapping and monitoring of the aerial 
extent and location of this degradation can be of vital 
importance in formulating strategies for reclamation 
once mining has ceased. 

A review of the literature indicates that satellite 
and aerial remote sensing data have been widely and 
effectively used to monitor the environmental effects 
of surface mining activities. There is evidence, how­
ever, to suggest that increased spatial resolution of 
Landsat TM does not necessarily ensure increased 
classification accuracy, as higher spatial resolution 
leads to increased spectral variability, which in turn 
may hinder accurate classification. 

Landsat TM and other satellite remote sensing 
data are useful for the investigation and monitoring 
of lands devastated by open pit mining activities. The 
results of this work show the cost- and time-effective 
opportunities of using high-resolution satellite data 
for monitoring surface mining and reclamation proc­
esses in Turkey. In comparison with conventional 
data acquisition and interpretation methods, satellite 
images are a good data source with useful temporal 
resolution. The spatial complexity and the spectral 
heterogeneity of the surface mine areas made the ap­
plication of the satellite data more difficult. However, 
the main surface mine and reclaimed features were 
detected and monitored by means of Landsat TM 
data. 

In summary, the potential of satellite remote 
sensing for monitoring lignite open pit mines is much 
higher than has been recognized thus far. However, 
remote sensing will not replace conventional methods 
entirely. The combination of space-borne and air­
borne remote sensing and conventional methods will 
provide a useful and cost effective tool for monitor­
ing devastated lands over a longer period. 
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