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ABSTRACT: Ore flows from production faces, seams or orebodics may have different qualitative features. 
Therefore, the grade fluctuations may lead to quality variations in the finished product. One available option 
to deal with this problem is to blend ores coming from different sources. For this reason the blending rates 
should be determined from each face, seam or orebody to provide a mix that effectively achieves implicit 
blending. In this paper, the problem is expressed as a minimisation problem of the total material cost of the 
finished product such a way as to satisfy the blending requirements. Using information of the random 
variables that characterise the mineral contents of each ore source, chance constraints are straightforwardly 
converted into deterministic constraints. Then the problem is solved by the simulated annealing (SA) 
algorithm to find so-called best result. The variability of each variable in each flow was quantified by semi-
variograms. Each flow was simulated to reproduce the characteristics, or behaviour, of the phenomenon as 
observed in the available data. The expected value of each variable in each flow was calculated by averaging 
of the simulated values. The technique is demonstrated on a case study compared with the result obtained by 
Zoutendijk's Method. 

I INTRODUCTION 

Mineral blending facility is used in various industrial 
operations. For instance, ore processing and 
metallurgical plants for ore concentration, coke 
ovens, blast furnaces, coal washery, copper and 
bauxite, pyrite-fed sulphuric acid, cement, fertiliser, 
palletising and glass production plants. 

Regardless of the extent to which an acceptable 
production and homogenisation schedule is 
accomplished, the stockpiling may not satisfy 
contractual constraints or plant requirements. In the 
stockpiling operation raw material is added having a 
high- or a low-grade in a given proportion to meet 
the specifications (Gy. 1999). In this case the 
blending (proportioning) rates should be determined. 

The linear programming (LP) has often been 
recommended as the best and the most widely 
applied method for blending goals (Gershon, 1988; 
Bott D.L. and Badiozamani K.. 1982; Gunn and 
Rutherford, 1990). For example, in order to meet Fe 
and SiO: specifications in an iron-steel plant, the 
blending problem can be defined as a minimisation 
problem in the deterministic manner: 

where: 
-V, 

/'< 
Fi 
S, 
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Si anıl Sı u 

is the blending ratio for ore type / 
is the unit price of ore type / 
is the Fe content of ore type / 
is the SiO; content of ore type / 
are the lower and upper limits for 
acceptable Fc content 
arc the lower and upper limits for 
acceptable SiO: content 
is the number of ore types or sources 

However, The LP has important drawbacks: 

I. The LP uses only a single goal in the objective 
function whereas there may be two or more 
objective functions in some applications. This 
kind of problem can be solved after extensive 
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modification of the LP, which is quite time-
consuming (Lyu et. ai, 1995). 

2. As the number of constraints increases, the 
convergence becomes increasingly difficult to 
achieve whereas a realistic case involves many 
constraints. 

3. The LP might require unrealistically small 
amounts of some ores or leave "small heaps" of 
ore in the inventory which would just be a 
nuisance (Candler, 1991). In other words, the 
LP may yield extreme solutions, which cannot 
be used in practice. In order to avoid this 
problem, the modifications that incorporate 
additional constraints in the LP can be used (Lai 
and Chen, 1996). 

4. The LP yields optimal results for the formulated 
problem but not for the real world problem 
because the LP takes no account of the random 
nature of ore variables. Traditional LP can be 
operated on the basis of deterministic values. 

These drawbacks of LP induce to seek alternative 
approaches. 

deterministic values. On the other hand, F, is random 
variable. 

Assume the random vector of Fe content for each 
different ore source: 

F = (Fi.i=l n (4) 

The expected value, E(F), and ««variance matrix 
of F, VAR(F), are: 

(5) 

VAR(F) = VF= COV(F„ FJ) (6) 

The Fe content of ore blend is a random variable, ly 

(7) 

The content has an expected value and a standard 
deviation, which depend upon the values assigned to 
the non-random decision variables x: 

2 STOCHASTIC APPROACH 

In the work described here an integration of Chance-
Constrained Programming (CCP) (Chaînes and 
Cooper, 1963) and the simulated annealing (SA) 
(Laarhoven and Aarts, 1987; Eglese, 1990; 1992; 
Dowsland, 1993; Ansari and Hou, 1997) is used. 

The CCP comprises 'chance constraints', which 
incorporate a strict measure of the probability with 
which the constraints must be met. For example, the 
chance constraints of the Fe content in an ore blend 
fed to an iron-steel operation may be specified as: 

(3) 

where: 

v, 
F, 
FL 

n 
aF 

is the blending ratio for ore type i 
is the Fe content of ore type / 
is the lower limit for Fe content 
is the number of ore types or sources 
is the reliability or risk level for the 
constraint on Fe grade 
is probability 

The constraints require the specification of both the 
target qualities and the specified probability of 
meeting the target quality. FL* and ar are 

(8) 

(9) 

where x is the column vector and .tTis its transpose. 
The expected value and variability of each variable 
in each ore flow should be quantified. This aspect is 
discussed in the next section. 

After the mean and variance are determined for 
each ore source, the distribution of the random 
variable, /•/-. should be specified for the reliability 
level. If the F,'s are normally distributed, the variate 
/>• also exhibits normal distribution. The following 
variate is obtained: 

(10) 

(11) 

where F-A-) is the cumulative normal distribution 
function. Integrating the above two equations yields 

(12) 

and the deterministic equivalent is expressed as: 

(13) 
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The similar equivalents can be derived for other 
variables if any. The grade components of the ore 
sources do not necessarily follow normal 
distributions. Sengupta (1972) summarises how non-
normal distributions can be used in CCP but the 
solutions become significantly more complex. Liu 
(1999) indicated that complex CCP models could be 
solved by modern heuristic methods such as neural 
network, genetic algorithms or simulated annealing. 

2.1 Estimation of means and variances used in 
stochastic programming 

The variance of the grades of samples within some 
specified volume is equal to the mean value of the 
semi-variogram of the samples within the specified 
volume. The variability of the grades over time in 
the ore stream determined by the sequencing model 
can be estimated from the semi-variogram model: 

(14) 

where h us separation vector, N is the number of data 
pans separated by h and i''.v are data values over the 
N(h). The dispersion variance may thus be regarded 
as a type of variogram calculation in which pairs of 
values are accepted in the averaging procedure as 
long as the separation vector hv is within the ore 
stream, S: 

(15) 

where s'(o/D)h the variance of the average value 
of the attribute (e.g. grade) of sampling sizes within 
the total deliverable tonnage. Although this could be 
estimated from a set of sample data, it is usually 
derived from a semi-variogram model: 

(16) 

where the right-hand side refers to the semi-
variogram model y< S ) averaged over all possible 
vectors within S. In practice, the ore stream is 
subdivided into n discrete time intervals and the 
average semi-variogram values can be calculated by 
approximation of the exhaustive average of the 
semi-variogram by an average of the n~ semi-
variogram values at the n discrete time intervals: 

(17) 

Sequential Gaussian simulation can be used to 
reproduce the characteristics, or behaviour, of the 
phenomenon as observed in the available data. 
Global means are calculated by averaging of the 
simulated values. 

3 SIMULATED ANNEALING 

Simulated annealing is a stochastic method for 
solving large objective combinatorial minimisation 
problems. The method is based on the principle of 
stochastic relaxation. Simulated annealing was 
developed by Kirkpatrick et. al. (1983) in the mid-
80's. The method has an analogy in 
thermodynamics, specifically with the way that 
liquids freeze and crystallise or metal cools and 
anneals. 

Suppose that a cost function in many variables is 
to be minimised. A simple and iterative local search 
could be performed to find the minimum cost. 
During the local search process, an initial solution is 
given and then a new solution is selected at random. 
If the cost of the new solution is lower than that of 
the current solution, the current solution is replaced 
by the new solution. Unfortunately, a local search 
may get stuck at local minima. L e t / : X —> R be a 
function to be minimised over X, where X is a finite, 
but very large set. A neighbourhood N(x) c X is 
associated with each element x € X. Iterations can 
be defined by first selecting a starting point and then 
repetitively selecting y e N(\) and comparing 
successive values. Simulated annealing allows the 
choice of v to be governed by the following 
stochastic rule: 

where; 

(18) 

/>,, is the acceptance probability 
T is a parameter known as temperature 
A is the current solution 
y is the new solution 

As T approaches zero, improving choices accepted 
and the method reduces to a pure local search. For 
very large values of T all y solutions chosen in the 
neighbourhood are accepted. Any T > 0 allows the 
iteration to escape from a local minimum sooner or 
later. Figure I. illustrates the basic simulated 
annealing algorithm. 

Some decisions must be made prior to 
implementing simulated annealing. These decisions 
may be classified into two groups; the first relates to 
the choice of a cooling schedule (generic decisions) 
and the second relates to problem-specific decisions. 
Bot-h decisions affect the speed of the algorithm. 
Kirkpatrick et al. (1983) remarked that convergence 
to a global optimum required more iterations than an 
exhaustive search. 
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Figure 1 Basit simulated annealing algoııthm 

is the allowable length ot the k'h Markov Chain 
CS and NS are the cunent and new proposed sequence, ıespectıvely 
Rem [0,11 is a landom numbei generated between 0 and I by the i andern numbeı generatoı 

are sequence indices 
is the temperatuie index 
is the tempeiature 
is the iteration number 

4 PROBLEM DESCRIPTION 

The pıoblem tıanstormed to deteımınıstıc 
equivalents is given as below 

subject to 

(19) 
(20) 

Note that this formulation includes non-linear toi m 
in some constraints 
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5 CASE STUDY 

In order to demonstrate the technique, the results 
obtained by one of Zoutendijk's methods of feasible 
directions (Van de Panne and Popp, 1963) were 
compared with the CCP based on the SA. 

Zoutendijk's method is one of available 
techniques for solving convex programming 
problems. The method is iterative and uses a feasible 
vector as an initial solution. The procedure iterates 
the non-linear problem at initial feasible solution 
into linear case. As non-linear functions are 
complicated, finding a solution is very difficult. 
Therefore, the technique is not practical. 

The problem was cattle feed blending with 
probabilistic protein constraint as a minimisation 
problem. Same problem is often encountered in 
mineral industries. Therefore, one can conceive as 
mineral blending problem rather than cattle feed 
blending problem. Costs, standard deviations, 
protein and fat contents of raw materials to be 
hlended were given in Table I. 

Table I. Input data 

Bailey 

Oats 

Sesame Flakes 

Guiundnut meal 

Prolein 

Comeni 

12.(1 

11.9 

41 8 

52.1 

Fal 
Content 

2.3 

5.5 

11.1 

1.3 

Cosl 

24.55 

26.75 

39.00 

40.50 

Standard 

Deviation 

0.53 

0.44 

4.50 

0.79 

Specified reliability level is 95% (if l-e is 0.95, q> is 
-1.645 from table of normal curve area). Protein 
commit of blend must be more than 21% and fat 
content of blend must be more than 5% 

Minimization problem was expressed as: 

(21) 

subject lo: 

The minimisation problem defined above is 
submitted lo the SA algorithm. The computer 
program was written in FORTRAN 90 by the author. 
The required annealing parameters were specified as 
follows: 

Initial temperature. The acceptance ratio must be 
almost 1 at the initial temperature and it should 
drop rapidly from I. In this research Tm„mi= 0.1 
Temperature decrement. TJ+;=a7"j is used as the 
decrement function, where a is almost I. In this 
research a is accepted as 0.95. 
Stopping Criterion. The procedure is terminated 
when the cosl of the solution obtained in the last 
trial of the Markov chain remains unchanged for 
three consecutive temperatures. 
Number of iterations in each temperature. 100 
000 iterations are implemented in each 
temperature. 
Limit of successful moves in each temperature. If 
10 000 iterations are successful in any 
temperature, temperature is directly decreased. 
Required reliability level for each temperature. 
Specified reliability level is 95%. 

Table 2. shows results obtained from Zoutendijk's 
Method and CCP based on SA As seen the results, 
the CCP based on SA yielded very similar results to 
Zoutendijk's Method. 

Table 2. Results compared with a traditional method 

Zoulendijk 
s Method 

CCP based 
on SA 

V; 

0.6359 

0.6284 

\, 
0.0000 

0.0088 

l l 

0.3127 

0.3096 

w 
0.0515 

0.0532 

,/fvi 
29.89 

2 

29.89 
1 

6 CONCLUSIONS 

The CCP based on the SA can be easily 
implemented to solve the mineral blending problem. 
The method is flexible to changing structure of 
objective function and constraints. The computer 
running time is approximately 50 minutes. 
Moreover, the program can easily be incorporated 
into multi-objective case. The technique is able to 
deal with random nature of the blending problem. 
The performance of method was, to a large extent, 
depends upon selection of cooling schedule of SA. 
For a further research the problem can expressed as 
a dynamic (multi-period) approach. 
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