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ABSTRACT: The discrete elements become more and more popular in describing damage and inelastic be­
havior of plenty of materials. Free hexagons are used as special discrete element method to describe nucleation 
of cracks in soil, or rock. The problem is aimed to the stability of tunnel face. The method proposes a continua­
tion and development of Desai's DSC (distinct state concept), which has formerly been used for saturated soils. 
Together with Transformation field analysis they create a powerful tool for assessment of tunnels. 

1 INTRODUCTION 

The neighborhood of the tunnel face is discretized 
into discrete elements, which are connected by ficti­
tious springs simulating clay holding stick or causing 
disconnections between the elements (Prochazka 
2004). The discrete elements are considered as free 
hexagons, their origin is in finite element method 
(Onck & van der Giessen 1999). Dynamical version 
of discrete elements can be found in (Cundall 1971), 
who starts with dynamical equilibrium of balls. This 
concept seems to be very appropriate for earthquake 
problems, but for almost statical problems is less ad­
vantageous. The stresses cannot be expressed, for ex­
ample. 

Models are considered for application to plastic­
ity, viscoelasticity and damage in soil/rock material. 
Model by (Kachanov 1992) is mostly used. The 
method proposes a continuation and development of 
Desai's DSC (distinct state concept) which has for­
merly been used for saturated soils (Desai 1994) and 
extended to solid materials (Desai 1994, Moreau 
1994). The extension by Desai consisted in inclusion 
of skeleton into the consideration and solution of 
such problems, which were coupled (mutual interac­
tion of water and skeleton was studied). Prochazka 
and Trckova (Prochazka & Trckova 2000) intro­
duced previously piecewise uniform eigenstrains in 
each material phase and precised the properties of the 
phases. Standard applications of the method to a 
two-phases rock material (stone, clay) are considered 
in this study, it means only one sub-volume per phase 
is considered. Discontinuous model is used by the 

discrete elements with softening respecting exclusion 
of tensile stress overstepping the tensile strength in 
springs connecting the elastic elements (Prochazka 
2004). In the same time the shear cracking occurs in 
the tangential direction of the possible crack, which 
are considered in the shear springs and they make 
disconnections in displacements. The main discon­
nection is due to tensile stress in normal direction (in 
the springs being oriented in normal direction). In 
this case, the discontinuous models can be used with 
more promising future. Because those discrete mod­
els can describe the situation more realistic, they are 
worked out in more details in (Prochazka & Trckova 
2001). A typical application of coupled modeling 
(experimental and numerical) to special case of pat­
terns was published in (Trckova & Prochazka 2001). 
We hold the discontinuous model and substitute the 
slip caused by overstepping the damage law by intro­
ducing generalized Mohr-Coulomb law on the inter-
facial boundary. The different aspects of the pro­
posed methods are systematically checked by 
comparing with finite element unit cell analyses, 
made through periodic homogenization assumptions, 
for three-directional lay-ups. 

In order to complete the accuracy of a design of 
tunnel stability, Transformation field analysis (TFA) 
is used (Dvorak & Prochazka 1996). This is a gener­
alization of original work by (Dvorak 1992). Another 
application of TFA is published in (Dvorak et al. 
1999), where optimal design of bearing capacity of 
submersibles was solved. All the above-mentioned 
works on TFA are concerned with uniformly distrib­
uted eigenparameters. (Michel & Suquet 2003) ex-

91 



P.P. Prochûzka 

tended the assumption of uniformly distributed ei-
genparameters to nonuniform transformation field 
analysis. 

Starting with certain mechanical model (Desai's 
model in our case) the TFA brings about more accu­
rate description of the physical conditions. 

2 GENERAL CONSIDERATIONS 

There are main different methods and tools that can 
be used to deliver the macroscopic constitutive re­
sponse of heterogeneous materials from a local de­
scription of the microstructure behavior. Here we are 
concerned with non-linear behavior by the inelastic­
ity of constituents or with the initiation and growth 
of damage. In the development of the homogeniza-
tion procedures for non-linear materials we have to 
define both the homogenization step itself (from lo­
cal variables to overall ones) and the often more 
complicated localization step from overall controlled 
quantities to the corresponding local ones. 

The nonlinear problems of localization and ho­
mogenization are of a great importance today. Not 
only classical composites suffer from deterioration of 
the material due to hereditary problems (aging, vis-
coelasticity). On the other hand, composite materials 
prepared in a special way can improve properties of 
other material and the resulting effect can be much 
better than before. In this case, nonlinear and time 
dependent behavior has to be taken into account. 
From the wide scale of papers name here 

The scope of the present paper is the development 
of constitutive equations for inelasticity and damage 
of heterogeneous materials that benefit from some 
specificities of a special boundary element method. 
On one hand, we need to obtain better approxima­
tions of the local stress and strain fields than in the 
Suquet based approaches, especially when consider­
ing damage and failure conditions. We want to sim­
plify sufficiently the numerical techniques of overall 
homogenization in order to obtain a treatable system 
of equations that could recover the status of a consti­
tutive equation. 

The computation was run on Pentium IV PC, 2.6 
GHz in FORTRAN. The program for generations of 
hexagonal of hexagon meshes of internal cells as 
well as the boundary nodes had been prepared using 
our own software. According to wish of the user, the 
meshing can be improved. The consumption of time 
for computation of even large system of equations, 
which can be stored into memory without use of hard 
disc or extended/expanded memory, was negligible 
in each step. Our illustration does not reach such di-
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mensions of computation. It is also not necessary for 
such problems to increase the precision of the mesh­
ing, it losses the efficiency. The iteration at each step 
of loading was also very fast. It is worth noting that 
similar computations was carried out by the FEM, 
but finer meshing had to be imposed to get the com­
parable result with the BEM in the procedure pre­
sented. The comparison has been tested in such a 
way that the sum of the concentration factors should 
be the unit tensor. 

In this contribution we are going to present the 
fundamental ideas of a numerical procedure leading 
to overall viscoelastic and damage behavior of rock 
matrix in a rock - tunnel lining aggregate. Based on 
the numerical models and mechanical laws it is pos­
sible to obtain the strain and stress in opposite to 
classical PFC, where no stresses are reasonably be 
reachable from the model (dynamical equilibrium is 
the starting point of balls, describing the original 
continuum). 

Very important property of the above procedure 
is the non-linearity of the problem, which, when us­
ing some smart algorithm, can be solved by very 
powerful iterative process. 

3 FREE HEXAGON ELEMENT METHOD 

The free hexagon element method may be considered 
the discrete element method (DEM). The great dis­
advantage of some classical DEM, however, is the 
difficulty to feed them with material properties pro­
vided from laboratory tests (this is also the case of 
the particle flow code (PFC) (Cundall 1971), as the 
balls in (Cundall 1971) are connected by springs, 
while laboratories provide completely different mate­
rial parameters being valid for continuum). This is 
here overcome by considering the material character­
istics, which are similar to the continuum. The prin­
cipal idea of classical DEM is adopted, and the do­
main defining the structure continuum is, in our case, 
covered by the hexagonal elements, and other then 
elastic material properties can be introduced, such as 
elastic-plastic, visco-elastic-plastic, etc. This step 
avoids the necessity to estimate the material proper­
ties of springs, which are essential, e.g. for PFC. The 
free hexagon element method fulfills a natural re­
quirement due to the fact that the elastic properties 
are assigned to the particles, and other material pa­
rameters (angle of internal friction, shear strength, or 
cohesion) to the contacts of the elements. Since most 
particles are of the same shape it is possible to apply 
very powerful iteration procedures, because the stiff-



The 19th International Mining Congress and Fair of Turkey, IMCET2005, Izmir, Turkey, June 09-12, 2005 

ness matrix can be stored in the internal memory of a 
computer. 

The computational model is described in this 
paragraph, where the relations needed for numerical 
computation are also introduced. The interface condi­
tions are formulated in the next paragraph, where the 
Lagrangian principle is based on the penalty method. 
The penalty parameters are represented by spring 
stiffnesses; the springs connect the adjacent ele­
ments. The material characteristics of springs can 
possess a large value to ensure the contact con­
straints. On the other hand, if, say, the tensile 
strength condition is violated, the spring parameters 
tend to zero, and in this case naturally no energy con­
tribution in the normal direction to the element 
boundary appears in the energy functional. This 
process excludes the possibility of a multivalued so­
lution, and uniqueness of the solution of the trial 
problem is ensured. If we cut out the springs when a 
certain interfacial condition is violated, the problem 
turns to singular and has not unique solution. Then 
the way on how the particles move in some later 
stages of destruction of the trial structure cannot be 
described. 

The hexagonal particles are studied under various 
contact (interfacial) conditions of the grain particles 
(elements). In this paper two contact conditions are 
considered: 

the generalized Mohr-Coulomb hypothesis, 
with exclusion of non-admissible tensile 
stresses along the contact (a rock mass, for 
example), 
limit state of shear stresses and exclusion of 
tensile tractions along the contact (a brittle 
coal seam, for example). 

The first case is generally connected with applica­
tions in matrices of composite materials, of shotcrete, 
and overburden of tunnels, etc., and the second case 
is more appropriate for applications in underground 
seams. A two-dimensional formulation and its solu­
tion have been prepared and is studied in this paper. 

The problem formulated in terms of hexagonal 
elements (which are not necessarily mutually con­
nected during the loading process of the body, be­
cause of nonlinearities arising due to the interfacial 
conditions) enables us to simulate nucleation of 
cracks and their propagation. The cracking of the 
medium can be described in such a way that the local 
damage may be derived. Local deterioration of the 
material is also shown in the pictures drawn for par­
ticular examples. Such a movement of elements and 

change of stresses probably cannot be obtained from 
continuous numerical methods. 

Figure 1. Geometry of adjacent hexagonal elements 

3.1 Computational model 

Let us now consider a single hexagonal element (de­
scribed by domain Q with its boundary r). Its 
connection with the adjacent elements is shown in 
Figure 1. In each hexagonal element, the pseudo-
elastic material properties are taken into considera­
tion, i.e., in every iteration steps the element behaves 
linearly, but the material properties can change dur­
ing the process of loading and unloading. This makes 
it possible to introduce only an elastic material stiff­
ness matrix, which is homogeneous and isotropic, 
and we get well-known integral equations that are 
valid along the boundary abscissas of the hexagons, 
(Bittnar&Sejnoha 1996): 

(1) 

where bi are components of the volume weight vec­
tor, r, are edges (abscissas) of the boundary ele­
ments, <f is the point of observation, x is the integra­
tion point, «,. are components of the vector of 
displacements (defined not exclusively on the bound­
ary, but also in the domain of the hexagonal ele­
ment), pt are components of the tractions, cu is the 
matrix, the values of which depend on position of 
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the point of observation. The quantities with an aster­
isk are the given kernels. The kernels can be ex­
pressed as (see (Bittnar & Sejnoha 1996), for exam­
ple): 

For better and more convenient computation, the 
most important integrals can be calculated in ad­
vance. In this way, the integrals in (2) may be calcu­
lated directly, without numerical integration. 

Let us introduce vectors as,ßs, s = 1,...,6, and 
also u and p as: 

and and are Lame's material constants. 
Assuming uniform distribution of the boundary 

quantities (displacements ut(x) and tractions 
p,(x),i = 1,2, and volume weight forces bl to be 
uniform in the domain , and positioning the points 
of observation successively at the points xs, 
which are the centers of the boundary abscissas of 
the hexagonal elements, a simplified version of (1) is 
written as: 

(2) 

where u* and p' are the values of the relevant quan­
tities positioned at the s = 1,...,6, i.e., 

and . Moreover, the vector 
of influences of the volume weight forces on the 
boundary abscissas is bs =(y,,y2 ),s= 1....6, and 

£=1 ,2 . 

Using this notation, the relations on the elements (2) 
can be recorded as: 

A u = B p + b (3) 

where A and B are (12 * 12) matrices, and their 
components are singular integrals over the boundary 
abscissas. Matrix A is generally singular, while ma­
trix B is regular. This fact enables us to rearrange 
equations (3) into the form: 

Ku = p + V, K = B - ' A , V = B - ' b (4) 

where the stiffness matrix K is different from that 
arising in applications of finite elements (here it is 
prevailingly non-symmetric), V is the vector of vol­
ume weight forces concentrated on the boundary ab­
scissas (more precisely at the point . In this way, 
the discretized problem becomes a problem similar to 
the FEM. 

Along the adjacent boundary abscissas it should 
hold ( are Eshelbys' forces): 

(5) 

where superscript plus means from the right and mi­
nus from the left (at most two particles can be in con­
tact). 

Now using the relations (4) and (5), we get twice 
as many unknowns as equations, because no connec-
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tion between the elements has yet been introduced. 
Equations (5) have to be accomplished by a con­
straint of the type 

(6) 

The latter conditions are penalty-like conditions, 
since if k, is great enough, the distribution of dis­
placements is continuous, and the displacement from 
the right is equal to the displacement from the left. 
These conditions can locally be violated, because of 
the contact conditions, which are discussed later in 
this text. Introducing boundary conditions and as­
suming that kt remains great enough leads us to a 
stable system of equations delivering a unique solu­
tion. Even in the case when local disturbances occur, 
the solution can be stable. It can happen that there 
are too many disturbances, e.g., dense occurrence of 
crack, and localized damage along a path (earth slope 
stability violation). Then the solution is unstable, and 
there is a failure of the structure. This is also, for ex­
ample, the case of a behavior of composites. 

Discretization in the previous sense leads to a 
nonlinear system of algebraic equations, which are 
solved by an over-relaxation iterative procedure. This 
method is sufficient for study purposes. For a larger 
range of equations the conjugate gradient method has 
been prepared. 

For displacements in the element domain £2 it 
holds: 

where the element boundary displacements and trac­
tions are known from the previous computation, pro­
viding the solution is stable. Using kinematical equa­
tions and Hooke's law, the internal stresses can be 
calculated from (7). There is no danger of singulari­
ties, as the points x and never meet (point lies 
inside the domain and x on boundary ). 

3.2 Formulation of the contact conditions 

Recall that displacements are described by a vector 
function u = <u,,u2 Jof the variable x - (x,,x2 ). 
The traction field on the particle boundaries is de­

noted either as p = ( p,,p2 ), or after projections to 
normal and tangential directions as p = ( p„,p, )• A 
similar result is valid for projections of displace­
ments, u = (un,ul ). Assuming the "small deforma­
tion" theory, the essential contact conditions on the 
interface may be formulated as follows (no penetra­
tion conditions): 

(8) 

where /jf, k = 1,...,« are boundaries between adja­
cent particles, «*" is the normal displacement of 
current element a = c and a = a belongs to the ad­
jacent element, both on the current common bound­
ary , r£, k runs numbers of all common sides of the 
particles, n is the number of common sides of hexa­
gons (having exactly two adjacent particles inside the 
domain, one or none on the external boundary). 

Let t * be the spring stiffness in the normal direc­

tion and kk

n be the spring stiffness in the tangential 

direction on 
the boundary between particles with a common 
boundary r*. Then in the elastic region 

Denote 

where «* " is the tangential displacement on the side 

k, denotes the tensile strength, is the shear 

strength, V is the set of displacements that fulfill the 
kinematical boundary conditions and condition (8). If 
p* = 0 then set K is a cone of admissible displace­
ments satisfying the essential boundary and contact 
conditions. This is valid for brittle or almost brittle 
material (coal seam, glass). If the material exhibits 
elastic-plastic behavior, then the cone K is changed 
as: 
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where is the angle of internal friction, and pk
n is 

the normal traction on the side k, x 's me general­
ized Heaviside's function being equal to zero for a 
positive argument and equal to one otherwise. Here 
the sign convention is important: positive normal 
traction is tension. 

From the above-defined spaces we can deduce 
that and behave linearly between 
certain limits, which are given by the material nature 
of the body. 

The total energy J of the system reads: 

(9) 

where e is the strain tensor, C is the stiffness ma­
trix of the particle, T denotes transposition,. is the 
sum of subdomains , i.e., of hexagonal elements, 
b is the volume weight vector. 

Note that the spring stiffness k[ plays the role of 
a penalty. Recall that the problem can also be formu­
lated in terms of Lagrangian multipliers, and then 
leads to mixed formulation. The latter case is more 
suitable for a small number of boundary variables; 
the problem discussed in this thesis decreases the 
number of unknowns introducing the penalty pa­
rameters. 

FORMULATION OF TFA 

In this section, our aim is to formulate the general 
procedure for the TFA. This may be done in terms of 
many modem numerical methods. It seems that the 
BEM is the most appropriate numerical method in 
this case, but the FEM is also admissible. 

First, let us consider that the body (part of a struc­
ture, element, system of more elements, composite) 
behaves linearly; i.e. Hooke's linear law is valid in 
entire body (this assumption admits among others an 
application of the BEM). When the problem is cor­
rectly posed, the displacement vector, strain and 
stress tensors can be obtained from the Navier equa-
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tions, kinematical equations, and the linear Hooke's 
law. 

In the second step we select points, where the 
measured values are available, either from experi­
ments in laboratory, or from "in situ" measurements. 
We also select points, or regions (subdomains) from 
the body under study, and apply there successively 
unit eigenparameter impulses (either eigenstresses or 
eigenstrains) to get an influence tensor (matrix). In 
order to precise this statement, denote A,, i = l,...,n, 
either the points or regions where the eigenparame-
ters will be applied. Let, moreover, the set of points 
where the measured values are known be S,, j = 
l,...,m. Then the real stress at ß; is a linear hull of 
stress ae%' at Bj due to external loading and eigen­
strains n and ep', or eigenstress X and relaxation 
stress 0rel at At (similar relations are valid for overall 
strain field E): 

(10) 

(11) 

or in differential (incremental) form: 

or 

(12) 

or 

(13) 

where the influence tensors P, Q, and R and T 
may be identical (in the case of the TFA they must be 
identical, as they describe generalized linear Hooke's 
law, and ), as any eigenparameter may 
stand for the plastic or relaxation parameter (say, ei-
genstrain may stand for plastic strain, which is obvi­
ous from (1)). The dimensions of 

, and are m x 6 (because of symmetric stress 
and strain tensors) and the dimensions of P and Q 
are m x 6 x n. In the classical TFA the values of |x , 
or are calculated from minimization of variance 
of computed and measured stresses. It holds: = - C 

The first relations in (10) and (12) describe the 
initial strain method while the second relations in 
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those equations formulate the initial stress method 
The eigenparameters may generally stand for plenty 
of phenomena like change of temperature, swelling, 
watering, etc. This is why we could split the eigen­
parameters in (10) into two parts: eigenparameters 
themselves and the quantities connected with physi­
cally nonlinear behavior of the material. 

DISTURBED STATE CONCEPT (DSC) 

The idea of this theory was originally proposed by 
Desai, and the theory characterized behavior of over-
consolidated clays. Since then, Desai and coworkers 
have developed and successfully applied this concept 
to other materials (Desai 1994). 

The DSC is a unified modeling theory for me­
chanical behavior of material and interfaces. It al­
lows incorporation of the internal changes on interfa-
cial boundaries of phases (both micro- and 
macrolevel) and the resulting mechanism in a de­
forming material into the constitutive description. 
Initially, the material under external loading is in 
relative intact state (IS). Using such theories as elas­
ticity, plasticity and viscoplasticity may theoretically 
treat the intact state, i.e. no cracking is considered in 
this state. After increasing the external loading, the 
material transforms from the IS state to the fully ad­
justed state (FA) or critical state, which is an asymp­
totic state, the material at that may no longer carry 
certain or all stresses. For example, microcracking 
and subsequent softening are such disturbances. 

Desai uses a scalar disturbance function D, hav­
ing different expressions depending of mechanical 
properties in the model under consideration. The 
equilibrium equation for a material element in terms 
of stresses is derived as: 

(14) 

where S,, stands for average (observed) response, Du 

is max D and is in most cases equal to one. Using the 
incremental method, the differentiation of the last re­
lation yields: 

(15) 

The first term of the right hand side of the last equa­
tion expresses continuum constitutive law for elasto-
plastic (visco-plastic) behavior, the second term 
obeys the classical Kachanov damage formulation 

(Kachanov 1992), and the third term in (15) indicates 
different stresses in the two parts. 

The incremental constitutive equations for the IS 
part and the FA part are expressed as: 

(16) 

where are in our case the components of von 
Mises-Huber-Hencky constitutive tensor IS part, 
furthermore are the components of damage 
constitutive tensor for FA part, superscripts IS and 
FA indicate the phases. For more details concerning 
the DSC see Desai's publications cited in Refer­
ences. 

For Hooke's law with Mises condition involving 
eigenstrain it holds in incremental form: 

(17) 

where (Duvant and Lions 1972): 

and 

for 

and are components of deviatoric part of the 
stress tensor, is the function of plasticity, which 
is defined for Mises model as: 

In the last formulas G is the shear modulus, k is a 
material positive constant. 

Using the dual transformation formulated by Du­
vant and Lions, we arrive at the following variational 
principle: 

min, (18) 

where 
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is the domain with a boundary r, rp is the part of 
/"where the tractions are prescribed, f is the function 
of volume weight, p are tractions, 
are components of the strain deviatoric tensor and K 
is the bulk modulus. The minimum of the functional 
is sought for such displacements u, which fulfil! the 
geometric boundary conditions. 

external loading which is applied to a plastic, vis-
coplastic, or others matrerials, and a linear hull of, 
say, the eigenstresses and plastic strains at 
other points x. Since we assume that at each point 
six values of stress, plastic stress, and eigenstress 
tensors are prescribed, the relation stresses at the 
points S*, k = l,...,m, and the eigenstresses and plas­
tic stresses and m at Ai 
becomes (to simplify the expressions the vector nota­
tion for stress and strain tensors is used), cf. (1): 

or 

(20) 

where express the current state of the overall 
stresses involving nonlinear changes in the material. 

Note that similar relations can be written for dis­
placements: 

Figure 2. TFA model and unified DSC & TFA model 

In order to make more transferable the TFA and 
the improved concept using Desai idea, a uniaxial 
stress-strain distribution is depicted in Figure 2. One 
can observe that first the elastic problem is solved, 
where even not too precise values of material proper­
ties are required. From the second picture in Figure 2 
it is seen that nonlinear material behavior is esti­
mated and the relaxation stresses improve the consti­
tutive law in accordance with measurement. 

On the other hand measured stresses , or 
measured displacements are available in a 
discrete set of points. A natural requirement is that 
the values of measured and computed values be as 
close as possible. This leads us to the optimization of 
an "error functional" 

TFA & DSC CONCEPT 
minimum, (23) 

Recall first the TFA involving the DSC. The 
transformation field analysis consists of expressing 
the stress at an arbitrary point of the domain by 
virtue of superposition of stress at due to 
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Differentiating / by yields a linear system 

of equations for 

(25) 
where 

In order to get d(o;/ in (8), one needs to calculate 

di This is the difference b e t w e e n f r o m (11) 
and the same quantities from the previous step of in­
cremental method. 

The procedure deserves a closer attention. In the 
first step the influence matrices are created, as de­
scribed in the above explanation (Sect, on formula­
tion of the TFA). The distribution of the disturb 
function D is determined mostly from laboratory 
tests. The incremental method is recommended when 
applying the DSC & TFA. 

Let us start with some load of the trial body. 
At the beginning the FA state will be most 

probably not reached. The Intact State follows the 
von Mises-Huber-Hencky law. When increasing the 
load, the DSC has to involve both IS and FA states 
into the computation. Then, the stresses are split into 
IS and FA parts. Increments of both these parts can 
be done from the DSC and the total stress for both 
parts is given by adding the increments to the previ­
ous steps. The same is valid for the total current 
stress; see (7). 

Since the relations (20) and (22) are linear, substi­
tutions of (S,f and there do not change the line­
arity. Then applying the minimum condition for the 
additional eigenstresses, the improvement of current 
stresses or error for the DSC is obtained. 

The above-described procedure can be created for 
measured displacements in a similar way. The dis­
placements have to substitute overall stresses and the 
"error functional" has to be employed. This is not in 
the full compliance with classical Transformation 
field analysis, but it follows from mechanical point 
of view. 

CLASSICAL CONTINUUM DAMAGE 
MODEL 

In the previous section, was used to express "error 
function", improving the choice of plasticity model. 
The function will express the influence of the 
damage. 

In the continuum damage model it is assumed that 
the damaged parts can carry no stress at all, and they 
act as voids. In other words, the observed response 
derives essentially from the undamaged parts; their 
stress-strain-strength behavior is degraded because of 
the existence of the damaged parts. For example, the 
damage parameter, , is defined as 

where V is the volume of the damaged parts and V 
is the total volume of the material element. Then, 
D represents the special case and appears in X2 as an 
argument. 

In the sense of the Unified TFA & DSC Concept 
the equilibrium for d a can be written as 

The representation of the function of can 

be found in (Kachanov 1992), for example. 
In comparison to simple TFA & DSC, the in­

volvement of free hexagons leads to nonlinear equa­
tions because of impossibility defining an appropri­
ate cone. On the other hand, this approach seems to 
be very promising, as it offers one of the most effi­
cient procedure leading the minimum variance of 
measured and computed results. The expressions 
(19) and (21) together with variational principle (23) 
enable us to connect both types of measurement. 

DISCUSSION OF THE RESULTS 

The material values has been selected as 
Fibers: Er = 414 GPa, vf = 0.19, cf = 0.25 

Matrix: En, = 99.5 GPa, vra = 0.3 

F™.«* = 48.7 GPa, vm r e s = 0.42 

k2 = 510Mpa 
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where cf is the fiber volume fraction. Two-
dimensional case is solved. Because of symmetry, 
overall strain has been applied in two directions: 
Enmd El2- The responses in damage (debonding 
of matrix from fibers) and plastic zones are calcu­
lated and depicted in Figs. 4b and 4c. The debonding 
corresponds a typical "75° zones along the interfacial 
boundary while plastic zones creating tongues be­
tween fibers. They are relatively long, as the plastic 
zone is limited by relatively low value of k. 

Figure 4. Damage and plastic behavior of rectangular 
RVE in periodic fibers: a) Geometry of the RVE, re­

sponses of b) En and c) En • 

CONCLUSION 
Generalized transformation field analysis is improved 
by Desai's DSC. In the model, damage is involved in 
a natural way using eigenparameters, which are 
known from classical TFA. They represent either 
plastic strains in Desai's model and play role of "er­
ror function", showing how exact the model and ma­
terial parameters are selected; also describe the dam­
age properties involved in Unified model. The results 

correspond the classical damage (debonding) behav­
ior. The plastic behavior follows a concentration of 
stresses in the zones describing the plasticity. 
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