AKTIVASYON ANALİZİ VE BU METODUN KAYA NUMUNELERİNE UYGULANMASI

Salih DÎNÇER* - Erol BARUÇUGIL**

özet

Bu çalışmada, eser elementlerin nitel ve nicel analizinde kullanılan aktivasyon analizinin genel özellikleri, matematik tasviri, diğer analitik metodlarla karşılaştırma, hata kaynakları, çeşitli uygulanma yerleri v.s. gibi hususlar kısaca gözden geçirilmekte ve nötron jeneratöründen elde edüen 14-MeV enerjili nötronlar yardımıyla yapılan bir uygulama verilmektedir.

Çalışmada kaya numuneleri içerisinde, "non-destructive" aktivasyon analizi tekniğiyle Si, Al, Fe gibi elementlerin varlığı tesbıt edilmiş ve Si ile Al için bulunma miktarları mutlak ve bulunma yüzdesi olarak hesaplanmıştır. Işınlama sonucu elde edilen karışık gamma ışınları spektrumunun soyulmasında iki usul uygulanmıştır, önce, kısa yarı ömürlü elementlerin etkisinin kaybolması için numune bekletilmiş ve sonra grafik metod yardımıyla soyma işlemi yapılmıştır. Mutlak değerlerin bulunmasında standart kullanılmıştır. Işınlamalarda monitör olarak bakır aktivasyon dedektörleri kullanılmıştır.

Abstract

In this work, the general properties of activation analysis used for the qualitative and quantitative analysis of trace elements, its mathematical description, sources of errors, several application fields, comparison with other analytical methods etc., have briefly been reviewed and an application using the 14-MeV energy neutrons from a neutron generator has been given.

(*) Fizik Y. Müh. Nükleer Araştırma Merkezi, Ankara. (**) Fizik Y. Müh. Nükleer Araştırma Merkezi, Ankara.

The presence of several elements like Si, AI, Fe in the lock samples has been observed by non-destructive technique and the absolute amount of SI and Al has been determined in percentage. The stripping: of the gamma-ray spectrum resulted from the irradiated sample was performed in two steps. First, the effect of other elements with short half life was eliminated and then a graphical stripping method was used. A standard was used for the determination of absolute amounts and copper activation detectors were used as monitor during the irradiation.

1. Giriş

Aktivasyon analizi, elementlerin nicel ve niteli analizinde kullanılan; sıhhatli ve incelikli sonuçlar veren; ekonomik, sür'atli ve gerektiği takdirde numunenin yapışım bozmadan (nondestructive) uygulanabilen bir analiz metodudur. Bu metodun temel prensibi, kararlı bir izotopun nötronlar veya yüklü parçacıklarla borbardıman edilerek uyartılması sonucu yayınlanan ısınmaların dedeksiyonu ve bombardıman sonucu oluşan radyoaktif çekirdeğin parçalanma yarı-ömrünün tayinine dayanır.

Aktivasyon analizi için en uygun şartlar şu hususlara göre sağlanmaktadır.

a) Nitel analizde, özellikle, ışınlanarak aktif hale getirilmiş çekirdeklerden çıkan karakteristik gamma ışınlarının enerjüeri ve aktif çekirdeğin parçalanma yan-ömrü gözönüne alınır. İncelenen numunede başka maddeler yoksa bu kolay ve basit bir şeküde sonuç verir. Aksi durumda ya kimyasal ayırım ya da karışık bir gamma-ışınları spektrumunun çözünümü ve bileşenlerine ayrılması için kompüter uygulaması gereklidir.

b) incelenen elementle ve denel şartlarla ilgili nükleer özellikler nicel analizde önemli rol oynarlar.

c) Işınlama sonucu oluşan aktiflik üzerinde, analizi yapılan elementin bulunma miktarı fazlasıyla etkili olmaktadır. Bunun için en uygun çekirdek reaksiyonunun, tesir kesiti gözÖnünde tutularak seçilmesi ve ışınlama süresinin de kısa veya uzun alınması gerekmektedir.

d) Aktivite üzerinde, ışınlamada kullanılan nötron veya yüklü parçacık akı değeri ve oluşan radyoaktif elementin yarı ömrü de etki yapmaktadır. İlgili elementin izotoplarına ait bolluk yüzdeleri de Önemle gözönüne alınmalıdır.

özet olarak ifade edildiğinde, nitel ve nicel analiz için en uygun şartlar sağlanarak, ışınlama sonucu çıkan ışınımların dedeksiyonundan;

1. Numuneden yayınlanan ışınımların cinsi,

2. Bu ışınımların enerjüeri,

3. Işınlama sonucu oluşan çeşitli radyoaktif çekirdeklerin parçalanma yarı-ömürleri,

4. Her aktif bileşene ait ışınım miktarı (ki bu, gamma ışınlarına ait spektrum alındığında, fotopik alanları hesaplanarak bulunmaktadır),

5. Numune ve standarda ait fotopik alanları yardımıyla, analizi yapılan elementin bilinmeyen miktarının tayini mümkün olmaktadır.

Aktivasyon analizi ile diğer analitik metodlar arasında, duyarlılık, elementlerin aynı anda tâyin edilebilirliği, sonuçların sıhhati v.s. gibi hususlar gözönüne ahnarak karşüaştırma yapmak mümkündür. Bu konuda yapılan iki karşılaştırma, Tablo-1 ve Tablo-2 de verilmektedir.

Özellikle, uranyumun zenginleştirümesi; hidrojen, lityum ve boron gibi elementlerin izotopik zenginleştirilmesi veya bileşimlerinin bulunması, fisyon yapabilen elementlerin izotopik büeşimlerinin bulunması v.s. gibi konularda aktivasyon analizi, kütle spektrometresiyle yapılan uygulama sonuçlarıyla büyük bir uyuşum sağlamaktadır (Tablo-3).

Tablo-4 den görüldüğü gibi, çok çeşitli uygulanma sahası bulunan ve gün geçtikçe gerek uygulanma tekniklerinde gerekse uygulandığı konularda devamlı bir gelişme görülen aktivasyon analiziyle ilgili yayınların sayısındaki artış hızı, bu analitik metodun taşıdığı önemi daha iyi belirtmektedir (Şekü 1).

Aktivasyon analizinin Özellikle duyarlılık bakımından sağladığı üstünlükler yanında, ışınlamalar için gerekli nükleer sistemlerin sağlanması, radyolojik sağlık kurallarına ve korunma yollarına gerek duyulması, gerektiğinde kompüter uygulaması zorunluğu v.s. gibi bazı sınırlayıcı hususlar da bulunmaktadır.

Bu metodun uygulanması sırasında kimyasal, nükleer ve denel olmak üzere çeşitli hata kaynakları gözönünde bulundurulmalıdır. Eğer yapı-bozulması olmaksızın bir analiz yapılıyorsa, kimyasal sınırlamalar bertaraf edilebilir. Genel olarak, hata kaynakları ve tahminî hata yüzdeleri Tablo 5 de görülmektedir.

Laboratuarımızda, aktivasyon analizinin yapı-bozulması olmaksızın (non-destructive) uygulanması ve çeşitli numuneler içindeki bilinmeyen elementlerin nitel ve nicel analizlerinin yapılması için gerekli çalışmalar yapılmaktadır. Elde edilecek gamma ışınları spektrumlarının çözümü amacıyla hazırlanmakta olan kompüter programları yardımıyla bu analizler rutin bir hale getirilecektir.

2. Teori ve Deney

Aktivasyon analizinde kullanılan çeşitli tekniklerden birisi de, nötron jeneratörlerinde, $1H^3(d, n)_2He^4$ reaksiyonuyla elde edilen 14-MeV enerjili nötronlarla, analizi yapılacak numunenin bombardımanı ve oluşan radyoaktif çekirdeğin yayınladığı gamma ışınları spektrumundan bulunan fotopik alanları; bu çekirdeğe ait parçalanma yarı-ömrü ve numuneyle aynı şartlar altında ışınlanmış, analizi yapılacak elementin bilinen miktarını havi bir standartla karşılaştırma yapmak suretiyle numune içindeki elementlerin nitel ve nicel analizlerinin yapılmasıdır.

Genel olarak, ışınlanma sonucu oluşan bir radyoaktif çekirdeğin kazandığı aktifik, radyoaktiflik olayının matematik ifadesi yardımıyla belirlenebilir. Bir radyoaktif çekirdeğin parçalanarak bir başka ürün radyoaktif çekirdek oluşturması incelendiğinde:

Ana ve ürün elementlerde t zamanında bulunan çekirdek sayısı, sırasıyla, N_a ve N; bu elementlere ait parçalanma sabitleri de λ_a ve λ olmak üzere,

$$dN_a / dt = -\lambda_a N_a \tag{1}$$

ve

$$dN / dt = -\lambda N + \lambda_a N_a$$
⁽²⁾

şeklindeki parçalanma denklemleri yazılabilir. Bu denklemlerin integrasyonu, sırasıyla,

$$N_{a} = N_{a}^{o} \exp(-\lambda_{a}t)$$
(3)
ve

$$N = \left[\lambda_{a}/(\lambda - \lambda_{o})\right] N_{a}^{o} \left[\exp(-\lambda_{a}t) - \exp(-\lambda t)\right] + N^{o} \exp(-\lambda t)$$
(4)

olmaktadır.

Bir reaktör içinde ışınlama sonucu, kararlı bir elementin t — 0 zamanında sahip olduğu N_a° çekirdekten t = t zamanında oluşan radyoaktif üründeki N aktif çekirdek sayısı, bu genel bağıntıdan giderek hesaplanabilir. Bu özel durumda A_a ana elemente ait parçalanma sabiti değü, reaktördeki 0 nötron akışı ve aktivasyon tesir kesitiyle orantılı ve ana çekirdeğin değişim hızını belirten bir sabit olmaktadır:

$$\boldsymbol{\lambda}_{\boldsymbol{\sigma}} = \boldsymbol{\boldsymbol{\Gamma}} \boldsymbol{\boldsymbol{\beta}} \tag{5}$$

)

Öte yandan, yine özel durum olarak,

1° t =0 ânında çekirdek i ;in $N^{\circ} = 0$,

2° ana çekirdeğin yarı-ömrü ürününkinden çok büyük, yani parçalanma sabiti çok küçük ise, exp $(-\lambda_s t) \simeq 1$ olduğu gözönüne alınıp (5) üe verilen ifade de yerine konularak (4) denklemi yeniden düzenlenirse,

$$N = (\emptyset \sigma / \lambda) N_{\sigma}^{\circ} \left[I - exp(-\lambda t) \right]$$
(6)

elde edilir. Radyoaktif ürün çekirdeğin sahip olduğu aktivite,

$$A = \lambda N = \mathscr{O} \mathcal{O} N_d^{\circ} \left[I - \exp(-\lambda t) \right]$$
(7)

şeklinde bulunur. N_a° çekirdek sayısıyla belirtilen elementin ağırlığı m, reaksiyona uğrayan kararlı çekirdeğe ait izotopik bolluk yüzdesi f, ana elementin atomik ağırlığı W ve N, = 6.02×10^{23} çekirdek/atom-gr, Avogadro sayısı olmak üzere, $N_a^{\circ} = (f N_{\circ}, m/W)$ yerine konulursa, (7) denklemi,

$$A = f \mathscr{O} \sigma m N_o \left[1 - \exp(-\lambda t) \right] / W$$
(8)

şeklini alır ve buradan, aktivasyon analizinde kullanılan temel ifade,

$$\mathbf{m} = \mathbf{A} \; \mathbf{W} / \mathbf{f} \; \boldsymbol{\varnothing} \mathbf{O} \, \mathbf{N}_{\mathbf{o}} \left[\mathbf{I} - \exp\left(-\lambda \mathbf{t}\right) \right] \tag{9}$$

olarak bulunur.

Tesir kesiti, akı ve parçalanma sabiti gibi değerler kesin olarak bilindiği takdirde bu denklem yardımıyla ve deney şartlarıyla ilgili gama ışınlarının Öz-soğurulması, dedektör verimi, sayma geometrisi ve katı açı v.s. gibi hususlarla ilgili düzeltmeler de yapılmak suretiyle analizi yapılan elementin miktarı mutlak olarak tayin edilebilir. Fakat bu yol çeşitli güçlükler çıkardığından, pratikte, karşılaştırma metodu uygulanmaktadır. Bu metotda, tayin edilmesi istenilen elementin bilinen miktarını havi bir standart kullanılır ve gerek numune gerekse bu standart aynı şartlarda ışınlamaya tâbi tutulur. Farklı ışınlama durumları için bir normalizasyon yapmak gereklidir. Işınlama sonunda, numune ve standarda ait spesifik aktiflikler, yani elementin ağırlığı basma aktiflik veya parçalanma hızı, biribirine eşit olacaktır:

$$\mathbf{A}_{\mathrm{tn}} / \mathbf{m}_{\mathrm{n}} = \mathbf{A}_{\mathrm{ts}} / \mathbf{m}_{\mathrm{s}} \tag{10}$$

buradan, incelenen numunedeki bilinmeyen madde miktarı,

$$m_{n} = m_{s} \left(A_{tn} / A_{ts} \right) \tag{11}$$

olarak bulunur.

Deneyde, M.T.A. tarafından sağlanan kaya numuneleri 14MeV enerjili nötronlarla bombardıman edümiş ve bu suretle radyoaktif hale getirilen numunelerin gamma-ışmları spektrumları, aşağıda belirtildiği gibi incelenerek gerekli analizler yapılmıştır.

Numunelerin aktivasyonundan hemen sonra alman spektrumlardan, numune içinde Si, Al ve Fe'nin kesin olarak bulunduğu; Mg ve Cu'nun da bulunma ihtimali olduğu görülmüştür. 6330 numaralı numunenin aktivasyon sonrası spektrumu Şekü 2 de verilmektedir. Şekilden de görüleceği gibi, Si²³ (n, p) Al²⁸, Fe^{*56} (n, p) Mn⁵⁶ ve Al²⁷ (n, p) Mg" reaksiyonları sonucu meydana gelmiş olan A1¹⁵ in 1.78 MeV, Mn^{5e} mn 0.845 MeV, Mg²⁷ nin 0.84 ve 1.02 MeV enerjili fotopikterinin gözükmesi, numunede Si, Al ve Fe'in varlığını ortaya koymaktadır. Bu spektumda görülen 0.51 MeV enerjüi pikin ise Cu⁶³ (n, 2n) Cu*- reaksiyonundan oluşan Cu^M ye ait yok olma piki olması muhtemeldir.

Nicel tayinde önce Si ele alınmıştır. Şekil 3 de Si standardı olarak kullanılan Sİ0₂ in gamma ışınları spektrumu görülmektedir. Si²⁸(n, p)Al²⁸ reaksiyonu sonucu oluşan Al³⁸ in 1.78 MeV enerjili fotopik alanlarının karşılaştırılması ve (11) denklemi yardımıyla numunedeki Si miktarı tayin edilmiştir. Bu deneyde, ışınlama süresi 5 dakika, bekleme süresi 2 dakika, sayma süresi ise 1 dakika olarak alınmıştır. Numunede mevcut demirden Fe⁵⁶(n, p)Mn^M reaksiyonu sonucu oluşan Mn⁵⁹ mn 1.81 MeV enerjili pikinin Al²⁸ 'e ait 1.78 MeV enerjüi pik üzerindeki etkisi, Mn⁵⁶ mn yarı-Ömrünün 2.58 saat olması ve 5 dakikalık ışınlama sonucu çok az miktarda Mn⁵⁰ oluşacağı düşüncesiyle, ihmal edilmiştir. Hesaplamalar sonucu, numunede, ağırlıkça mutlak olarak %18.7 Si bulunmuştur.

Alüminyum tayininde ise önce $Al^{27}(n, p)Mg^{27}$ reaksiyonundan oluşan Mg^{2T} nin 0.84 MeV enerjüi fotokopikinden faydalanılmak düşünülmüşse de Fe^{5fi}(n, p)Mn^{5fi} reaksiyonundan oluşan Mn⁵⁰ ya ait 0.845 MeV enerjüi gamma-ışını fotopikinin girişim yapacağı gözönüne alınmış ve bunun yerine Mg^{27} nin 1.02 MeV lik fotopikli miktar tayininde esas alınmıştır. Bu pik üzerinde, Si²⁸ den oluşan Al²⁸ e ait 1.78 Mev enerjili ve Al²⁷(n, a) Na²¹ ile Mg^fn, p)Na²⁴ reaksiyonlarından çıkan, Na^{1J1} ün 1.37 MeV enerjili gamma ışınlarına ait Compton saçılması etkisi düşünülmüştür. Bu etki, bekleme süresi uzun alınarak ve daha sonra grafik metoduyla soyma yapılarak giderilmiştir. Şekil 4 de numunenin ışınlama bitiminden 32 dakika sonraki gammaışınları spektrumu verilmiştir. Şekilden de görüleceği gibi, yarı-

ömrü 2.27 dakika olan $A1^{15}$ e ait 1.78 MeV enerjili fotopi kaybolmaktadır. Şekil 5 ve Şekil 7 de, sırasıyla, Al standardının ıişmlamadan 38 ve 160 dakika sonraki spektrumlan görülmektedir. Alüminyum standardında ışınlamadan 160 dakika sonrası için Na²⁴ e ait saf spektrum elde edümektedir. Bu spektrumun sadece Na¹⁴ e ait olduğu, literatürden alınan spektrumla karşılaştırma sonucu teyid edilmiştir.

Standarda ait bu spektrumda, Na ' ün fotopikinin sayım değeri ile numunede gözüken Mg27 fotopikinin (1.02 MeV kanal sayılarına tekabül eden kanallardaki sayım değerleri oranlanmıştır.

Şekil 6 da numunenin ışınlamadan alındıktan 172 dakika sonraki spektrumu görülmektedir. Spektrumda görülen 1.37 MeV'lik Na¹⁴ fotopiki üzerindeki 6.56 dakika yarı-ömürlü Al³» un 1.28 MeV enerjili gammasının etkisi tamamen kaybolmuştur. 1.37 MeV'lik fotopikin sayma sayıları zamana göre tashih edilerek, 32 dakika sonra almmıg olan numune spektrumundaki Na²' pikinin sayma sayısı elde edilmiştir. Bu fotopikten, yukarıda belirtildiği gibi elde edilen, oran değerleri kullanılmak suretiyle, Mg²⁷ nin 1.02 MeV'lik fokopiki üzerindeki Na¹⁴ ün tesiri tashih edilmiştir. Aynı şeküde, standardın 1.02 MeV'lik piki diğer tesirlerden kurtarılmış ve karşılaştırma yoluyla Al miktarı tayin edilmiştir. 6330 numaralı numune içinde ağırlıkça % 6.3 Al bulunmuştur.

İkinci bir yol olarak da 160 dakika bekletilmişjiümune ve standart spektrumlarındaki 1.37 MeV'lik Na²⁴ fotopikleri karşılaştırılmış ve Al miktarı %7.98 olarak bulunmuştur.

Bu iki değer arasındaki farkın, numune içinde bulunması muhtemel magnezyumdan $Mg^{24}(n, p)Na^{21}$ reaksiyonuyla oluşan Na" ün etkisiyle ortaya çıktığı düşünülmüştür. Farkın, hata oranına yakın oluşu, bu yolla, numunede Mg miktarının tayininde engel teşkil etmiştir.

Deneyde, numunenin ışınlanması için, trityum hedefi bulunan, Kaman-001-A Model nötron jeneratörü kullanılmıştır. Maksimum nötron akışı 10° nötron/cm[!] sn dir. Numunelerin

ışınlanma sonucu, yayınlanan gamma ışınlarının dedeksiyonunda, 3X3 inçlik **Nal** (T1) kristali, gerekli NIM Modül elektronik ile birlikte Laben-1024 çok-kanallı Analizörü kullanılmıştır.

3. Tartışma

Nötron jeneratörü, nötron kaynağı olarak, nokta kaynak olduğundan, numune ve standardın aynı anda ışınlanması sırasında aym nötron akısına mâruz kaldıkları iddia edilemez. Bu yönden bir hataya engel olmak için numune ve standart içine boydan boya bakır tel halinde aktivasyon monitörü konularak akı normalizasyonu yapılmıştır. Numune ve standardın ışıklanmaları sonunda gerekli zaman düzeltmeleri yapılmıştır. Numune ve standardın aktivitelerinin elde edilmesinde fotopik alanları esas alınmıştır; alanlar Covell metoduna göre hesaplanmıştır.

Si tayininde demirden gelen etkinin ihmal edilebilmiş olması, bunun yanında, Al tayininde demirin etkili olabileceği şu şekilde açıklanabilir:

Si tayininde ışınlama süresi, demirden meydana gelen Mn¹⁰ nın yarı-Ömrüne göre çok kısa alınmıştır. Ayrıca, Mn^{BS} dan çıkan 1.81 MeV'lik gamma ışınının yayınlanma ihtimali küçük olduğundan bu etki ihmal edüebüir.

Al tayininde ise, numunenin ışınlama süresinin uzun oluşu yanında Mn^{DG} nın 0.845 MeV'lik gammasının yayınlanma ihtimalinin büyük olması bu etkinin ihmal edilemeyişi sonucunu **vermektedir.**

		Nötron		Spekti	roikmyasal	Metodlar
		Aktivasyon	Bakır	Do	Flame	
Element	Z	Analizi	Spark	Arkı	Fotometri	Kolorimetri
Li	3		0.002		0.002	
Be	4		0.002		250	0.04
В	5		0.1		10	
N a	11	0,00035	0.1	20	0.0002	
Mg	12	0.03	0.01	0.1	1	0.06
Al	13	0.00005	0.1	0.2	20	0.002
Si	14	0.05	0.1	2		0.1
Р	15	0-001	20	50		0.001
S	16	0.2				
CI	17	0.0015				0.04
К	19	0.004	0.1		0.01	
Ca	20	0.19	0.1		0.03	
Sc	21	0.0001	0.005			
Ti	22		0.1		2	0.03
V	23	0.00005	0.05		2	0.2
Cr	24	0.01	0.05	2	1	0.02
Mn	25	0.00003	0.02	0.2	0.1	0.001
Fe	26	0.45	0.5	0.2	2	0.05
Co	27	0,001	0.5		10	0.025
Ni	28	0-0015	0.1	4	10	0.04
Cu	29	0.00035		0.2	0.1	0.03
zn	30	0.000	2	20	2000	0.016
Ga	31	0.00235	1		1	
Ge	32	0,002				0.008
As	33	0.0001	5	10		0.1
Se	34	0.0025				
Br	36	0.00015				
Rta	37	0.0015	0.2		0.1	
Sr	38	0.03	0.5		0.1	
Y	39	0.0005	0.01		60	
Zr	40	0.015	0.1			0.13
Nb	41	0.5	0.2		20	50
Mo	42	0.005	0.05		30	0.1
Ru	44	0.005			10	0.2

Tablo 1 — Nötron Aktivasyon Analizi ve Spektrokimyasal Metodlar Arasında Duyarlılık (^ıg/ml olarak) Bakımından Karşılaştırma (W. W. Meinke, Science 121, 177 (1955))

	Nötron			Spektroikmyasal Metodlar			
Element	z	Aktivasyon Analizi	Bahir Spark	De Arkı	Flame Fotometri	Kolorimetri	
Rh	45				1	02	
Pd	46	0.00025	05		1	01	
Ag	47	0.005		01	05	01	
Cd	48	0.0025	2	4	20	0 01	
In	49	0.000005	1		1	02	
Sn	50	0.01		02	10		
Sb	51	0 0002	5	4		0 03	
Те	52	0 005	05		100	05	
Ι	53	0 001					
Cs	55	0.0015	0.5		1		
Ва	56	0 0025	01		3		
La	57	0 0001	0 0 5		5		
Ce	58	0 005	05		20	0 25	
Pr	59	0.0001	02		100		
Nd	60	0.005	02		50		
Sm	62	0 00003	02		100		
Eu	63	0.0000015	0 02				
Gd	64	0.001	01		10		
Tb	65	0.0002					
Dy	66	0.0000015	05		10		
Но	67	0.00002	02				
Er	68	0 001	05				
Tm	69	0.0001	0 0 5				
Yb	70	0.0001	01				
LU	71	0.000015	2				
Hf	72	0.001	05				
Та	73	0.00035	1				
W	74	0 00015	05			04	
Re	75	0.00003	2			0 05	
Os	76	0 001				1	
ir	77	0 000015	5			2	
Pt	78	0 005	0 02			0 2	
Au	79	0.00015	0.2		200	01	
Hg	80	0.0065	5	2	100	0 08	
Tl	81	0 03		02	1		
Pb	82	01	0 0 5	02	20	0.03	
Bi	83	0 02	0.2	02	300	1	
U	92	0 0005	1		10	07	

Tablo 1 _ (Devamı)

			(1)	(2)	(3)	(4)	(5)	(6)	(7)
Soğurma									
Spektroskoplsi			Hayır	Oİ-1	Mâkul	iyi	Kötü	Kötü	
Fluoresans						-			
Spektroskoplsi			Hayır	XI	Mâkul	İyice	Kötü	Kötü	
Emisyon	a)	Direkt	Evet	1	iyi	St. lâzım	ivi	ivi	
Spektroskoplsi	b)	Kimyasal					- , -	-) -	
		ayırımdan							
		sonra	Evet	0.3	iyi	Mâkul	Kötü	Kötü	
Fluoresans					•				
X-ışınları									
Spektroskoplsi			Evet	10-100	îyl	St. lâzım	ivi	Mümkün	
Kütle	a)	izotop Sey-					2		
		reltme	Sınırlı	Çok yüksek	iyi	Mâkul	Kötü	Kötü	
Spektroskoplsi	b)	Vakum Spark	Evet	0.01	tyi	St. lâzım	yi	iyi	
	c)	Gaz Analizi	Evet	Gelişmekte	Orta				
Rezonans									
Spektroskoplsi	a)	Nükleer							
		Mağnetlk	Hayır	Zayıf					Kimyasal
	b)	Elektron Spin	Mümkün	Orta					Form için
Extraksiyon			Oksijen,						
			Hidrojen,						
			Azot	1	Mâkul	Mâkul	iyi	Kötü	
Gaz									
Kromatografisl			Evet	1	tyi	tyi			
Elektrokimyasal									
Metodlar			Oldukça	0.1	Mâkul	iyi	Kötü	Kötü	
Radiotracer			Нау1г	Yüksek	I.Vİ	?	iyi	Kötü	Direkt tayin için değil
Aktivasyon			Bazı du-						
Analizi			rumlarda	Çok yültsek	îyl	iyi	iyi	iyi	

Tablo % — Yüksek Saflıktaki Maddelerin Analizi İçin Seçilmiş Metodların Karşüastırılnmsı (A. A. Smales, Modern Trends in Activation Analysis, 186,1965)

Tablo 2 – (Devamı)

- (1) Çegitli elementlerin aynı anda tayin edilebilme imkânı.
- (2) ppm olarak metodun duyarlılığı
- (3) Metodun spesifikligl
- (4) Metodun sıhhati
- (5) Kontaminasyon v.s. den serbest kalabilme
- (6) Yüzey kontamlnasyonunun etkin olma durumu
- (7) Düşünceler

Tablo 3 — V--' İzotopunun Tâyini İçin Kullanılan tki Metodun Karşılaştırılması (A. P. Seyfans, Analyst 80, 74,1955)

′ **.**

Aktivasyon Analizi	Kütle Spektrometresİ
(% ± 3 o-)	
0.391 ± 0.006	0.388 ± 0.007
0.388 ± 0.006	0.392 ± 0.007
0.385 ± 0.006	0.390 ± 0.007
0.391 ± 0.006	0.390 ± 0.007
0.391 ± 0.006	0.391 ± 0.007
$0.3T4 \pm 0.006$	0.373 ± 0.007
0.389 ± 0.008	0.395 ± 0.007
0.387 ± 0.008	0.388 ± 0.007
0.398 ± 0.008	0.396 ± 0.007

Ι —	Fiz	ikî Dünya:					
	a.	Kozmosfer					
	b.	Atmosfer					
	c.	Hidrosfer					
	d.	Litosfer					
	e.	Biosfer	1)	Biokimya			
			2)	Biyoloji			
			3)	Tıb			
			4)	Çevresel	Bil	imler	
II —	End	düstriyel Uyg	guĺai	malar:			
	a.	Her türlü e	ndüs	triyel mal	zem	e İç	erisindeki eser elementlerin
		rutin analiz	i				
	b.	Sondajlarda					
III —	öze	l Uygulamal	ar:				
	a.	Karşılaştırm	alı .	Analizler	1)	Kriminoloji
						2)	Arkeoloji
						3)	Resim San ¹ atı
	b.	tzotopik An	aliz				

Tablo 5 – Aktivasyon Analizinde Hata Kaynakları (J. F. Call, J. R. Weiner, G. G. Rocco, Modern Trends in Activation Analysis, 253, 1965)

Hata Kaynağı	Tahminî Hata (%)
1 — Kimyasal	
a Numune Ağıtlığı	i-1
b Standart Ağırlığı	± 2
c Verim Tayini	±2
2 — Işınlama	
a ön Zırhlama (self-shielding)	± 4
b Akı Depresyonu	-2
c Termik Genişleme	± 2
d Termik Akının Mutlak Değen	± 5
e. Kadmiyum Oranı Değeri	± 2
f Işınlama Zamanı (<1 dak için)	± 3
g Nötron Akısının Homojen Olmayışı	±1
3 — Nükleer Sabitler	
a Ya11-Ömur	$\pm 2 - 10$
b Parçalanme Şeması	$\pm 2 - 50$
c Tesir Kesiti	$\pm 5 - 30$
4 — Nükleer Reaksiyonlar	
a. Rekabet Edici	Değişken
b Girigici	Değişken
5 — Sayma	± 3
b. Sayma Hızı (<1000 sayma/sn için)	± 4
c. Geometrik Faktörler	± 1

Bibliyografik Tanıtım:

- 1 P. Kruger, Principles of Aactivation Analysis, Wiley-Interscience, (1971).
- 2. C. E Miller, ORNL-2715 (18Ö9).
- C. M. Iiederer, J. M. Hollander, I. Perlman, Tables of Isotopes, John Wiley and Sona Inc., 6th ed., (1968).
- 4. W. W. Meinke, Scince 121, 177 (1955).
- 5. A. A. Smales, in "Modern Trends of Activation Analysis", Texas A and M University, College Station, 186 (196S).
- 6. Activation Analysis: A Bibliography, ed. by G. J. Boreni, R. S-Maddock, W. W. Meinke, NBS Technical Note 467, Part 1, (1968).
- 7. J. P. Call, J. R- Welner, G. G. Rocco, in "Modern Trends of Activation Analysis", Texas A and MUniversity, Collège Station, 253 (1965).
- 8. D. F. Covell, Anal. Chemist., Vol. 131, No. 11, 1785 (1959)
- 9. R. L. Health Scintillation Spectrometry, Gamma-Ray Spectrum Catalog, AEC Report No: IDO-16880, 2nd ed., (1964)
- 10. A. P. Seyfang, Analyst 80, 74 (1955).