

TBM Arıza ve Bekleme Sürelerinin Performans Değişimi Üzerine Etkileri

The Effect of Breakdown and Delay Times of TBM on Performance Changes

S.Beyhan, Y.Kasap

Dumlupınar Üniversitesi, Maden Mühendisliği Bölümü, Kütahya

ÖZET Kazı yapılan formasyona uygun TBM (Tunnel Boring Machine) seçimi ve optimum çalışma koşullarının yanında etkin bir iş planı ile etkili bir ilerleme hızına ulaşmanın mümkün olabileceği düşüncesinden yola çıkılarak, TBM durma ve bekleme sürelerinin önemine dikkat çekebilmek, performans üzerindeki etkilerini tespit edebilmek ve iyileştirme çalışmaları için önerilerde bulunabilmek amacıyla etkinlik analizleri yapılmıştır. Analizlerde; Konya Ovası Sulama Projesi (KOP) kapsamında kullanılan TBM'e ait Aralık 2008 ve Ekim 2010 tarihleri arasında yürütülen kazı çalışmalarındaki aylık verileri Malmquist Toplam Faktör Verimlilik Indeksi ile değerlendirilmiş ve genel verimlilik değişiminde azalma meydana geldiği tespit edilmiştir. TBM'in etkinliğini olumsuz etkileyen en büyük faktörlerin sırasıyla hidrolik arızalar ve su + hava kesintileri, TBM mekanik arızalar, TBM elektrik arızaları, Dış + diğer beklemeler ve back-up mekanik arızalar sebebiyle meydana gelen bekleme sürelerinin olduğu belirlenmiştir.

ABSTRACT Based on the probability that an effective progress speed could be achieved with an efficient work plan as well as choosing the appropriate TBM (Tunnel Boring Machine) and optimum working conditions for the formation of the excavation site, the aim of this study was to determine the effects of breakdown and delay times on the progress efficiency of the TBM used in Konya Plain Irrigation Project. TBMs data between December 2008 and October 2010 were evaluated by means of Malmquist Productivity Index and decrease overall productivity was determined. The most effective ones among the factors influencing the monthly efficiency of the TBM were delay times caused by hydraulic breakdowns and lack of water + ventilation, TBM mechanic breakdowns, TBM electrical breakdowns, external + other delays and back-up mechanic breakdowns.

1 GİRİŞ

Dünya nüfusundaki artışa, gelişen bilim ve teknolojiye bağlı olarak insan ihtiyaçları gün geçtikçe artmakta ve çeşitlenmektedir. Çok yönlü ihtiyaçlar arasında yer alan ulaşım ve alt yapı olanaklarını iyileştirebilmesi için yeraltı yapılarının (tünel, metro vb.) önemi gündeme gelmiştir. Bu yapıların açılmasında delme-patlatma yöntemine alternatif olarak geliştirilen TBM vasıtasıyla sessiz, titreşimsiz, hızlı, güvenli ve tam kesitli kazı imkânı sağlanmıştır.

TBM performansında etkili olan parametreler; TBM'in teknik kazı özellikleri, yapılan kayacın özellikleri kazı alanı ve organizasyonudur (Hassapour et al 2009, Fuoco et al 2009, Oraee 2010). Şüphesiz ki bir tünel projesinde kullanılabilecek makine ve donanım seçiminde öncelikle kazı yapılacak kayacın özellikleri ve kazılabilirliği etkilidir. Ancak. mevcut makine özellikleri ve çalışma koşullarının yanı sıra etkin bir iş planı ile etkili bir ilerleme hızına ulaşmak mümkün olabilecektir. Tüm alanlarda olduğu gibi bu alanda da mevcut makine, isgücü, sermaye, malzeme hatta zaman

ve bilgi kaynaklarının etkin kullanımı ile kazı maliyetlerinde düşüşler meydana gelirken, kapasite kullanım oranları ve karlılıklarında artışlar gözlenebilecektir.

TBM'in ortalama ilerleme hızı, kazı yaptığı esnadaki net ilerleme hızından oldukça düşüktür. Makinenin ilerlemesi, vardiya değişimi, bakım, tahkimat ve nakliyat esnasında meydana gelen bekleme süreleri ilerleme hızını dolayısıyla performansı olumsuz etkileyen parametrelerdir.

Bugüne kadar yapılan bircok TBM calismada performanslari değerlendirilirken yalnızca makinenin teknik özellikleri ve kazı yapılan kayacın özelliklerinin dikkate alındığı tespit edilmistir (Barton 1999, Barton 2000, Sapigni et al 2002, Ribachi and Lembo-Fazio 2005, Ramezanzadeh et al 2005, Yağız 2007, Gong and Zhao 2009, Hassanpour et al 2009, Hamidi et al 2010). Oysaki arıza veya kazı prosedürü gereği meydana gelen durma

ve bekleme süreleri, TBM'in ilerleme hızı üzerinde olumsuz etkilere sebep olmakta ve kazı için ayrılan potansiyel zamanla birlikte sistemin etkinliğini azaltabilmektedir.

Oraee (2010) yaptığı çalışmada tüm kazı işlemlerinde harcanan zamanın toplam kazı zamanına bölünmesiyle zaman etkinliğinin tespit edilebileceğini belirtmistir. Ancak burada etkinliğin/etkinsizliğin belirlenmesi sadece durum tespitinden ibarettir. Yapılan analizlerde etkinsizlik kaynakları belirlenerek etkinliğin sağlanabilmesi önerilerde icin bulunabilmek gerekmektedir.

Bu çalışmada, TBM durma ve bekleme sürelerinin önemine dikkat cekebilmek. performans üzerindeki etkilerini tespit edebilmek ve ivileştirme çalışmaları için önerilerde bulunabilmek amacıvla etkinlik analizleri vapılmıştır. Analizlerde: Konya Ovası Sulama Projesi (KOP) kapsamında yapılan tünelde kullanılan çift kalkanlı TBM'e ait Aralık 2008 ve Ekim 2010 tarihleri arasında yürütülen kazı çalışmalarındaki aylık veriler Malmquist Toplam Faktör Verimlilik indeksi ile değerlendirilmiştir.

Günümüzde üretim amaçlı kullanılan birbirinden farklı kaynaklar ve bu kavnakların kullanımı ile elde edilen farklı ürünler ve girdi-çıktı birimlerindeki farklılıklar verimliliğin değerlendirilmesini güçleştirdiğinden dolavı birçok ölçüm yöntemi geliştirilmiştir. Verimlilik ve etkinlik gibi ölçütleri de içerisinde bulunduran performans ölçümlerini gerçekleştirecek standart biçime gelmiş güvenli ve geçerli ölçüm tekniklerinin bulunmayışı ve analizlerde fonksiyonel gerektirmemesi parametrik form olmayan doğrusal programlama

metotlarının öne çıkmasına sebep olmuştur.

Parametrik olmayan doğrusal programlama metodu tek bir dönemde karar birimlerinin verilerini kullanarak analiz yapmakta, zaman icinde meydana gelebilecek etkinlik değişimlerini dikkate almamaktadır. Bu sebeple etkinlik analizlerinde zaman boyutunu da dikkate alan Malmquist Toplam Faktör Verimlilik indeksi gelistirilmistir. Parametrik olmayan doğrusal karar modellerinin cözümünde DEAP 2.1(Data Envelopment Analysis Program) paket programı kullanılmıştır (Coelli 1996). Yapılan analizler sonucunda dikkate alınan 23 ayın 17 ayında verimsiz calışıldığı tespit edilmiştir. Etkinsizlik sebepleri belirlenerek arıza ve bekleme sürelerinin ortalama %32,073 oranında çalışma azaltılmasıyla veriminin ortalama %24.43'ten %36.13'e çıkartılabileceği sonucuna varılmıştır.

2 KONYA OVASI SULAMA PROJESI

Konya Ovası Sulama Projesi (KOP),

Türkiye'nin en büyük sulama projeleri arasında yer almaktadır.

Proje kapsamında inşa edilecek 3 baraj (Bağbaşı, Afşar ve Bozkır) ve bir tünel ile Yukarı Göksu Havzası'nın Akdeniz'e boşalan sularının yıllık 414,13 milyon m³'ü Konya kapalı havzasına aktarılacaktır. Aktarılan su vasıtasıyla hem Konya Ovası'nın yeraltı suları beslenecek hem de 223410 hektar'lık tarım alanının sulama suvu desteklenecektir. Avrıca 50.6 MW kurulu güçte 3 adet hidroelektrik santrali ile yıllık 147.5 milvon kWh enerii üretimi gerceklestirilecektir.

Tünel, Konya'ya 110 km Bozkır ilçe merkezine 25 km uzaklıktadır. Tünel açma çalışmalarının 6 Temmuz 2007 tarihinde başlamış olmasına rağmen TBM ile yapılan ilk kazı çalışması Aralık 2008 tarihinde gerçekleşmiştir. Ekim 2010 itibariyle tünelde ilerleme 10132 metreye ulaşmıştır. Tünelin toplam uzunluğu 17034 m, tünelden geçecek su miktarı 36 m³/sn'dir.

Bu projede tünel açımında kullanılan TBM'in teknik karakteristikleri Çizelge 1'de verilmektedir.

Makine	:	Çift Kalkanlı 0488 120
Tip	:	Teleskopik Çift Kalkanlı
Kazı Çapı	:	4880 mm
Segman tipi	:	Hekzagonal
Ağırlık	:	~ 390 tons (570 ton back-up ile)
Uzunluk	:	11.2 m (TBM); ~ 165 m (TBM + back-up)
Maksimum delme oranı	:	10 m / saat (indirgenmiş basınç altında)
Çalışma gerilimi	:	2000 volt
Kesici kafa	:	17" disk kesiciler ile donatılmış düz dönen kesici
Maksimum itme kuvveti	:	8544 kN (32 x 267 kN)
Dönüş hızı	:	0 to 10.9 rpm (değişken)
Dönüş gücü	:	6 x 315 kW

Çizelge 1. TBM teknik özellikleri

3 YÖNTEM

TBM arıza ve bekleme sürelerinin ilerleme mesafesi üzerindeki etkilerini tespit edebilmek için girdi bazlı parametrik olmayan doğrusal programlama metodu, TBM'in verimlilik değişimlerini inceleyebilmek için ise Malmquist Toplam Faktör Verimlilik (TFV) Indeksinden yararlanılmıştır. Bu metot; parametrik yöntemlerde (regresyon analizi gibi) olduğu gibi fonksiyonel bir forma ihtiyaç duymaması ve karar verme birimlerinin ortalamalarına göre belirlenen etkin bir sınırdan ziyade verimliliği en iyi olan karar verme birimine göre belirlenen etkin sınıra kıyaslama göre işlemini gerçekleştirmesi sebebiyle seçilmiştir (Seiford 1996, Grosskopf 1986).

Bu çalışmada parametrik olmayan doğrusal programlama modellerinde kullanılan kümeler, parametreler ve değişkenler aşağıdaki gibidir;

Amaç Fonksiyonu;

Girdi minimizasyonu altında yapılacak etkinlik ölçümü için kurulan modellerde çıktılar sabit tutularak girdiler minimum yapılmaya çalışılmaktadır.

n karşılaştırmanın yapıldığı karar verme birimlerinin (KVB=dikkate alınan aylar) sayısı,

- *s* üretimden elde edilen çıktı sayısı
- *m* üretimde kullanılan girdi sayısı,
- k = (1, 2, ..., n) dikkate alınan karar verme birimi kümesi,

j = (1, 2, ..., n) tüm karar verme birimi kümesi,

 $r = (1, 2, \dots, s)$ tüm çıktıların kümesi,

i = (1, 2, ..., m) tüm girdilerin kümesi,

- λ_{jk} girdi bazlı modelde etkinliği ölçülen "k" karar biriminin diğer birimlere (*j*) göre aldığı ağırlık değeri,
- θ_k en iyi sınırı elde etmek için dikkate alınan k KVB'nin tüm girdilerini azaltmaya çalışan skaler değişken (etkinlik değeri),
- y_{ri} j karar birimi tarafından üretilen r'inci çıktı miktarı,

Kısıtlar;

Kısıt (2) setleri girdi minimizasyonu altında yapılan parametrik olmayan doğrusal programlama analizinde sabit tutulan çıktıların karşılaştırmasını ifade etmektedir. Bu kısıt ile her bir j karar verme biriminin (KVB) r. çıktısı, etkin sınırı oluşturan etkin işletmelerin r. cıktısının maksimum lineer kombinasyonundan daha büvük olmayacaktır. Etkinsiz KVB'lerindeki girdilerin minimum yapılmaya calışıldığı kısıtlar ise eşitlik (3)'te gösterilmektedir. Her bir j. KVB'nin i. girdisi, tüm işletmeler tarafından kullanılan i. girdinin ağırlıklı lineer kombinasyonu ile oluşturulan seviyeden daha küçük bir girdi seviyesi θ vasıtasıyla ölçülebilecektir.

Bir KVB'nin etkin sayılabilmesi için;

- Optimal θ_k değerinin 1'e eşit olması ($\theta < 1$ ise etkinsiz),
- Tüm aylak ve artık değişken değerlerinin sıfır olması

 $(s_{ik}^{+}, s_{rk}^{-} = 0)$ gerekmektedir.

- y_{rk} k karar birimi tarafından üretilen r'inci çıktı miktarı,
- x_{ii} j karar birimi tarafından kullanılan i'inci girdi miktarı,
- x_{ik} k karar birimi tarafından kullanılan i'inci girdi miktarı,
- L(y) girdi ihtiyaç serisi,
- s_{ik}^{+} aylak değişken (k karar biriminin i'inci girdisine ait atıl değer = fazla miktarda kullanılan girdi),
- s_{rk}^{-} artık değişken (k karar biriminin r'inci çıktısına ait atıl değer = yeterli miktarda üretilmeyen çıktı),
- *t* dikkate alınan ilk ay
- t+1 dikkate alınan ikinci ay

Parametrik Olmayan Doğrusal Programlama modeli aşağıdaki gibidir (Charnes vd., 1978).

Amaç Fonksiyonu

 $\min \theta_k$

Kısıtlar;

 $\sum_{j=1}^{n} \lambda_{jk} \cdot y_{rj} - s_{rk}^{-} = y_{rk} \qquad ; \quad r = 1, 2, \dots, s$ (2)

$$\sum_{i=1}^{n} \lambda_{jk} \cdot x_{ij} + s_{ik}^{+} = \theta_k \cdot x_{ik} \qquad ; \quad i = 1, 2, .., m$$
(3)

$$\lambda_{ik}, s_{ik}^+, s_{rk}^- \ge 0 \qquad ; \quad \forall i, r, j$$
(4)

Bu yöntemin en önemli avantajı, her karar verme biriminin etkinsizlik miktarını ve kaynaklarını tanımlayabilmesi ve etkin olmayan birimlerin etkin hale gelebilmeleri (etkin birimleri referans alarak) için yöneticilere yol gösterebilmesidir.

Parametrik olmayan etkinlik analizinin temelini oluşturan modeller Charnes vd. (1978) tarafından ölçeğe göre sabit getiri varsayımı altında geliştirilmiştir. Ölçeğe göre sabit getiri varsayımında; girdi vektöründeki herhangi bir radyal artış (bütün girdi bileşenlerinin aynı oranda artışı) çıktı vektöründe de aynı oranda bir radyal artışa neden olmaktadır.

Parametrik olmayan doğrusal programlama metodu, statik bir analiz

şekli olup, tek bir dönemde karar birimlerinin verilerini kullanarak analiz yapmaktadır. Ancak etkinliği saptanmış bir karar birimi daha sonraki dönemlerde etkinliğini yitirebilir ve referans olma özelliğini kaybedebilir. Bu açıdan etkinlik değerlendirme sürecinde, zaman içerisinde meydana gelebilecek değişimin incelenebilmesi amacıyla Malmquist toplam faktör verimlilik indeksi geliştirilmiştir.

Teknik etkinlik ölçümüne uzaklık fonksiyonları dahil edilerek elde edilen Malmquist TFV indeksi; iki birimin toplam faktör verimliliklerindeki değişimini ortak bir teknolojiye olan uzaklıkların oranı olarak ölçmektedir. Uzaklık fonksiyonu çok-girdili, çokçıktılı üretim teknolojilerini, maliyet

(1)

minimizasyonu kâr va da maksimizasyonu gibi hedefleri belirtmeden. tanımlamada kullanılmaktadır. Girdi uzaklık fonksiyonu, çıktı vektörü verildiğinde, oransal olarak en çok daralan girdi olarak vektörüne bağlı üretim teknolojisini tanımlamaktadır. Benzer olarak, çıktı uzaklık fonksiyonu, girdi vektörü verildiğinde, oransal olarak en çok genişleyen girdi vektörüne bağlı olarak üretim teknolojisini tanımlamaktadır (Cingi ve Armağan, 2000; Coelli et al, 1998). Bu çalışmada dikkate alınan aylar içerisinde karar verme birimlerinin etkinlik inceleyebilmek değişimlerini icin yapılan etkinlik analizleriyle uyumlu olması açısından girdi uzaklık fonksiyonundan yararlanılmıştır.

Grifell-Tatje ve Lovell (1995), Malmquist TFV indeksi için gerekli uzaklık fonksiyonlarının olan hesaplanmasında, ölçeğe göre değişken getiri varsayımını kullanmanın, verimlilik değişimini doğru ölçmeyeceğini göstermişlerdir. Bu nedenle indeksin, ölçeğe göre sabit getiri varsayımı altında hesaplanması gerekmektedir.

$$D_i(x, y) = \max\left\{\theta: (\frac{x}{\theta}, y) \in L(y)\right\}$$
(5)

Uzaklık fonksiyonu $D_i(x,y)$ 'nin alacağı değerler, x vektörü L(y) etkin sınırı üzerinde ise 1.0; x vektörü L(y)içindeki etkin olmayan bir noktayı tanımlıyorsa <1.0; ve x vektörü L(y)dışındaki mümkün olmayan bir noktayı tanımlıyorsa >1.0'dir. Şekil 1 girdi uzaklık fonksiyonunun nasıl göstermektedir. kurulduğunu Aynı çıktıyı veren her üç üretimde de A, B ve C noktaları ile ifade edilen girdi vektörlerinin kullanıldığı gözlenir. L(y)etkin sınır; A noktasına kadar dikey, A-В noktalarını birleştirecek ve B noktasından itibaren yatay uzayacak şekilde biçimlendirilmiştir. Yatay ve dikev uzanımlar, girdilerin ihmal edilmis kabul edildiği verlerdir. $D_i(x, y)$ 'in değeri *l/Etkinlik Değeri* olarak verilir. C noktası için Etkinlik Değeri=OD/OC iken $D_i(x, y) = OC/OD$ dir. A ve B etkin sınır üzerinde olduğundan bu noktalar için Etkinlik *Değeri* ve $D_i(x, y)$ l'e eşittir.

Girdi uzaklık fonksiyonu;

Şekil 1. Girdi uzaklık fonksiyon grafiği

Dikkate alınan t dönemi ve bunu izleyen (t+1) dönemi arasındaki girdiye göre Malmquist toplam faktör verimlilik değişim indeksi (MALM), uzaklık fonksiyonu çerçevesinde;

$$MALM = \sqrt{\frac{D_i^t \left(x^t, y^t\right)}{D_i^t \left(x^{t+1}, y^{t+1}\right)} \times \frac{D_i^{t+1} \left(x^t, y^t\right)}{D_i^{t+1} \left(x^{t+1}, y^{t+1}\right)}}$$
(6)

olarak hesaplanmaktadır. Burada
$$D_i(x,y)$$
, $(t+1)$ dönemi gözleminin t

dönemi teknolojisinden olan uzaklığını ifade etmektedir. *MALM* fonksiyon değerinin 1'den büyük olması tdöneminden (t+1) dönemine olan toplam faktör verimliliğinde büyüme olduğunu 1'den küçük olması ise aynı dönemler dikkate alındığında toplam faktör verimliliğinde azalma olduğunu göstermektedir.

Uzaklık fonksiyonundan hareketle hesaplanan Malmquist TFV indeksi verimlilikteki değişimleri iki ayrı bileşene göre incelemektedir. Bunlar, teknik etkinlik değişimi ve teknolojik değişmedir. Etkinlik değişimi, karar verme birimlerinin etkin sınıra yaklaşma sürecinin bir değerlendirmesini verirken, teknolojik değişme etkin sınırın zaman içindeki değişimini vermektedir (Grifell-Tatje ve Lovell, 1995).

Denklem 6	veniden	düzen	lendiğinde	
				2

$MALM = \frac{D_i^t \left(x^t, y^t \right)}{D_i^{t+1} \left(x^{t+1}, y^{t+1} \right)} \times \sqrt{1}$	$\frac{D_i^{t+1}(x^{t+1}, y^{t+1})}{D_i^t(x^{t+1}, y^{t+1})}$	$\frac{1}{\sum_{i=1}^{t+1} \left(x^{t}, y^{t} \right)}{D_{i}^{t} \left(x^{t}, y^{t} \right)}$
	\smile	(7)

Etkinlik Değişimi Teknolojik Değişimi MALM = Etkinlik Değişimi × Teknolojik Değişim dir.

Malmquist TFV indeksinin hesaplanmasında aşağıdaki dört girdi uzaklık fonksiyonu kullanılmaktadır;

Tanımlanan bu uzaklık değerlerinin tüm dönemler ve gözlemler için hesaplanabilmesi, n KVB sayısını ve t dönem sayısını göstermek üzere, n(3t-2) tane doğrusal programlama modelinin çözümünü gerektirmektedir (Fare et al, 1994). Bu çalışmada da dikkate alınan 1 TBM ve 23 ay olması sebebiyle analizlerin yapılabilmesi için 67 adet doğrusal programlama modeli çözülmüştür.

$\left[D_i^t \left(x_j^t, y_j^t\right)\right]^{-1}$	$= \min \theta_{k}$ $\sum_{j=1}^{n} \lambda_{jk}^{t} \cdot y_{rj}^{t} \ge y_{rk}^{t}$ $\sum_{j=1}^{n} \lambda_{jk}^{t} \cdot x_{ij}^{t} \le x_{ij}^{t} \cdot \theta_{k}$ $\lambda_{jk}^{t} \ge 0$	$\left[D_i^t \left(x_j^{t+1}, y_j^{t+1}\right)\right]^{-1}$	$= \min \theta_{k}$ $\sum_{j=1}^{n} \lambda_{jk}^{t} \cdot y_{rj}^{t} \ge y_{rk}^{t+1}$ $\sum_{j=1}^{n} \lambda_{jk}^{t} \cdot x_{ij}^{t} \le x_{ij}^{t+1} \cdot \theta_{k}$ $\lambda_{jk}^{t} \ge 0$
$\left[D_i^{t+1}\left(x_j^{t+1}, y_j^{t+1}\right)\right]^{-1}$	$= \min \theta_k$ $\sum_{j=1}^{n} \lambda_{jk}^{t+1} \cdot y_{rj}^{t+1} \ge y_{rk}^{t+1}$ $\sum_{j=1}^{n} \lambda_{jk}^{t+1} \cdot x_{ij}^{t+1} \le x_{ij}^{t+1} \cdot \theta_k$ $\lambda_{jk}^{t+1} \ge 0$	$\left[D_i^{t+1}\left(x_j^t, y_j^t\right)\right]^{-1}$	$= \min \theta_k$ $\sum_{j=1}^{n} \lambda_{jk}^{t+1} \cdot y_{rj}^{t+1} \ge y_{rk}^{t}$ $\sum_{j=1}^{n} \lambda_{jk}^{t+1} \cdot x_{ij}^{t+1} \le x_{ij}^{t} \cdot \theta_k$ $\lambda_{jk}^{t+1} \ge 0$

4 UYGULAMA

4.1 Veriler ve Değişkenler

TBM' de oluşan arızalardan kaynaklanan zaman kayıplarının ve kazı prosedürü gereği oluşan bekleme

sürelerinin kazı ilerleme mesafesi üzerindeki etkilerini araştırabilmek için TBM'e ait 2008 Aralık ve 2010 Ekim tarihleri arasındaki kazı işleminin yapıldığı ayların girdi ve çıktı değerleri dikkate alınmıştır. Yapılan analizin akış şeması Çizelge 2'de verilmiştir.

Çıktı olarak; aylık kazı ilerleme (metre/hafta) mesafesi dikkate TBM alınmıştır. arızaları (TBM Mekanik arıza, TBM hidrolik arıza, TBM elektrik arıza), Back-up arızaları (Back-up mekanik arıza, Back-up hidrolik arıza, Back-up elektrik arıza) ve genel arızalar (Tren arızaları, elektrik güç kaynağı arızaları, su ve havalandırma arızaları, tünel hattının uzatılması, kesici uç bakımı, ring yastıklama enjeksiyon gecikmesi. gecikmesi, dış+diğer gecikmeler) girdi parametreleridir. Bu parametreler (saat/ay), ayda meydana gelen arıza veya diğer sebeplerden kaynaklanan bekleme sürelerini ifade etmektedir.

TBM arkasında bulunan ve back-up sistemler olarak adlandırılan kısım ise

yüksek gerilim elektrik kabloları, havalandırma ekipmanları, ray döşeme ekipmanları, su ve drenaj hatları, segmentleri taşıma ve kaldırma üniteleri, kabin, kazılan malzemenin taşınması için bant konveyör ve vagonlardan oluşmaktadır. Back-up mekanik, back-up hidrolik, back-up elektrik arızalar bu sistemlerde meydana gelen arızaları kapsamaktadır. Analizde dikkate alınan ilerleme mesafeleri ile arıza ve bekleme süreleri Cizelge 3'te verilmiştir.

Setler ve parametreler

- *n* karar verme birimi sayısı 2008 Aralık -2010 Ekim arasındaki aylar (1. 2. 3......., 23).
- *s* analizde kullanılan çıktı sayısı (aylık kazı ilerleme mesafesi).
- *m* analizde kullanılan girdi sayısı (TBM arızaları, Back-up arızaları, Genel arızalar).
- k = (1.2....23) dikkate alınan karar verme birimi kümesi.
- j = (1.2....23) tüm karar verme birimi kümesi.
- r = (1) tüm çıktıların kümesi.
- i = (1, 2, 3) tüm girdilerin kümesi.

	Çıktılar (metre)	Girdiler (saat)				
	Aylık Kazı		Back-Up	Genel		
	İlerleme Mesafesi	Arızaları	Arızaları	Arızalar		
Max.	20,84	7,80	0,60	16,90		
Min.	755,81	165,35	55,40	626,00		
Standart	220,41	48,54	13,49	132,01		
Ortalama	440,52	59,31	13,26	115,08		
τορί α Μ	10131 02	1364,18	304,9	2646,95		
IOILAM	10151,92		4316,03			

Çizelge 3. Analizde kullanılan girdi çıktı verileri

4.2 Analiz Sonuçları

DEAP vasitasiyla TBM'in ilerleme mesafeleri (çıktılar) sabit tutularak dikkate alınan tüm girdiler kendi aralarında kıyaslanmış ve en az zaman kaybı (arıza ve bekleme sürelerinden kaynaklanan) ile en fazla ilerlemeyi gerçekleştiren aylar (etkin aylar) tespit edilmiştir. Çizelge 4'te verilen sonuçlar incelendiğinde; 2009 Mart, Temmuz, Ağustos, Kasım, Aralık ve 2010 Ocak aylarında meydana gelen arıza ve bekleme sürelerine rağmen, en büyük kazı mesafesine ulaşılması sebebiyle bu ayların tam etkin ($\theta_k = 1,000$ and $s_{ik}^{+}, s_{rk}^{-} = 0$) oldukları tespit edilmiştir. Geriye kalan 17 ayda ise arıza ve bekleme süreleri açısından verimsiz calışıldığı tespit edilmiştir. TBM'in ortalama toplam faktör verimlilik değeri % 58,2 (%41,8 verimsiz) olarak belirlenmistir. Sonuçlarda belirtilen yeni girdi değerlerine ulaşılabilecek bir iş organizasyonu ile arıza ve bekleme sürelerinden kaynaklanan verimsizlik oranı ortadan kalkacaktır.

%7,1'lik etkinlik değeri ile 2008 Aralık ayı en etkinsiz ay olarak belirlenmiştir. Söz konusu aydaki etkinsizlik; TBM'in yeni kazı işlemine başlaması sebebiyle meydana gelen bekleme sürelerinin fazla genel kavnaklanmaktadır. olmasından Etkinsizlik sebeplerini ortadan kaldıracak çözüm önerilerini tespit edebilmek amacıyla duvarlılık analizleri yapılmıştır. Etkinsiz haftaların etkin hale gelebilmeleri için arıza ve bekleme sürelerini ne oranda azaltmaları gerektiği tespit edilmiştir.

2008 Aralık ayının etkin hale gelebilmesi için TBM arıza sürelerinin %92,950, back-up arıza sürelerinin %92,960 ve genel arıza sürelerinin ise %99,143 oranında azalması gerektiği tespit edilmiştir. Etkinsiz tüm ayların etkin hale gelebilmeleri için girdilerini hangi oranda azaltmaları gerektiği tespit edilmiş ve Cizelge 4'te verilmistir. bekleme Arıza ve sürelerinin ortalama %95,018 oranında azalması ile etkinsiz haftalar etkin hale gelebileceklerdir.

Analizler çıktıların sabit tutularak girdilerin azaltılması yönünde yapıldığından dolayı çıktı değerlerinde değişiklik olmamıştır $(s_{rk} = 0)$.

	IZVD	TFV	TB	М	Back	-up	Ger	el	Arızalarda	Malmquist
1	K V B	(θ_{i})	Arıza	ları	Arıza	Arızaları		alar	Ortalama	TFŶ
		(\circ_k)							% Azalma	
			%	S_{ik}^{+}	%	S_{ik}^{+}	%	S_{ik}^{+}		
			Azalma	IK	Azalma	ik	Azalma	in		
2008	Aralık	0,071	92,950	0	92,960	0	99,143	38,777	95,018	-
2009	Ocak	0,588	41,181	0	41,222	0	89,914	48,783	57,439	12,134
	Şubat	0,498	50,181	0	50,175	0	50,181	0	50,179	1,847
	Mart	1,000	0,000	0	0,000	0	0,000	0	0,000	2,047
	Nisan	0,541	45,867	0	62,012	2,761	45,866	0	51,248	1,014
	Mayıs	0,319	70,777	3,504	74,879	2,266	68,104	0	71,253	0,767
	Haziran	0,354	77,779	16,157	64,562	0	64,562	0	68,968	0,973
	Temmuz	1,000	0,000	0	0,000	0	0,000	0	0,000	0,316
	Ağustos	1,000	0,000	0	0,000	0	0,000	0	0,000	2,738
	Eylül	0,489	51,100	0	67,282	2,727	51,100	0	56,494	0,589
	Ekim	0,891	53,582	55,201	10,874	0	10,874	0	25,110	1,403
	Kasım	1,000	0,000	0	0,000	0	0,000	0	0,000	0,756
	Aralık	1,000	0,000	0	0,000	0	0,000	0	0,000	0,455
2010	Ocak	1,000	0,000	0	0,000	0	0,000	0	0,000	0,306
	Şubat	0,867	13,272	0	13,263	0	13,272	0	13,269	0,505
	Mart	0,690	30,965	0	72,882	17,689	30,966	0	44,938	0,490
	Nisan	0,247	75,317	0	75,321	0	75,317	0	75,318	0.377
	Mayıs	0,186	81,426	0	81,500	0	99,079	48,498	87,335	0,088
	Haziran	0,328	67,244	0	76,898	1,236	85,922	36,746	76,688	2,053
	Temmuz	0,076	92,381	0	92,381	0	92,381	0	92,381	0,220
	Ağustos	0,496	50,446	0	50,446	0	50,446	0	50,446	3,609
	Eylül	0,178	90,805	14,258	82,179	0	82,182	0	85,056	0,363
	Ekim	0,562	43,845	0	43,842	0	43,844	0	43,844	3,217
ORT	ALAMA	0,582	44,744		45,769		45,789		45,434	0,865

Çizelge 4. Toplam Faktör Verimlilik Bileşenleri

Çizelge 5'ten de görülebileceği gibi işletme tarafından yapılan tespitler sonucunda toplam çalışılan saatin 13094, net çalışma saatinin ise 3199 olduğu tespit edilmiştir. Çalışılmayan saat (13094-3199=9895); zorunlu bekleme süreleri (TBM bakımı vb işler için harcanan standart süre) ile arıza ve beklemeden kaynaklanan zaman kayıplarının toplamina eşittir. İncelenen verilere göre toplam arıza ve beklemeden kaynaklanan zaman kaybı yaklaşık 4737 saat olduğuna göre zorunlu bekleme süresi 5158 saate (9895-4737) eşit olacaktır. Bu veriler dikkate alınarak çalışma verimi %24.43 (3199 /13094) olarak hesaplanmıştır.

Analiz sonuçlarından elde ettiğimiz değerlere göre arıza ve bekleme sürelerinin ortalama % 45,434 oranında azalması sonucunda 4737 saatin

yaklaşık 2585 saate gerilediği görülmüştür. Bu durumda çalışılmayan saat 7743 (5158+2585) olacaktır. Yeni

net çalışma saati ise 5351 (13094-7743) olarak hesaplanabilir. Sonuç olarak arıza ve bekleme sürelerinin belirlenen oranda azaltılması sonucunda yeni çalışma veriminin %40,86'ya (5351/13094) ulaştığı tespit edilmiştir. Çalışma veriminin daha da yükseltilebilmesi için zorunlu bekleme süreleri üzerine de bir çalışmanın yapılması ve bu sürelerinde iyileştirilmesi gerekmektedir. Ayrıca kayacın kazılabilirliğindeki değişiminde çalışma verimi üzerinde etkisi olduğu değerlendirilmelidir.

Çizelge 5. TBM çalışma süreleri

Tarih	:	Aralık 2008 – Ekim 2010
Toplam Çalışılan Saat	:	13094 saat
Net Çalışılan Saat	:	3199 saat

TBM'in aylık etkinlik değişimi (Malmquist TFV Değişimi) incelendiğinde en büyük artışın kazı işlemine ilk başlanan 2008 Aralık ayından sonraki 2009 Ocak ayında gerçekleşmiştir. Bu ayda kazıya ilk başlandığında meydana gelen arızalar ortadan kaldırılmış, Back-up ve genel arızalardaki azalma ile orantılı olarak ilerleme mesafesi artmış ve verimlilikte artmıştır.

TFV Malmquist değişim değerlerinin 1'den yüksek olması bir önceki ava göre verimlilikte artıs olduğunu, 1'den küçük olması ise verimlilikte azalış olduğunu işaret etmektedir. Yapılan analizlerle tüm dikkate alınan arıza ve bekleme vaklasık olarak sürelerinin %45 oranında azaltılmaları gerektiği tespit edilmiş (çizelge 4'teki ortalama azalma oranlarına göre) ve hepsinin TBM performans değişimi üzerinde hemen hemen eşit derecede etkili olduğu sonucuna varılmıştır. Ayrıntılı bir değerlendirme ile de TBM hidrolik arıza, Back up mekanik arıza ve su + hava kesintilerinin bekleme sürelerini arttırdığı (verimliliği azalttığı) belirlenmiştir. Verimlilik değişimlerinin genel ortalaması (%86,5 <1) incelendiğinde dikkate alınan aylar icerisinde verimliliğin azalma

eğiliminde olduğu tespit edilmiştir. Bu azalmanın sebebinin kazı yapılan kayaç ve TBM özellikleri ile arıza ve bekleme sürelerinden kaynaklandığı tahmin edilmektedir.

5 SONUÇLAR VE ÖNERİLER

Konya ovası sulama projesi kapsamında açılan tünelde kullanılan TBM'in ilerleme etkinliği üzerinde arıza ve bekleme sürelerinin etkilerini tespit edebilmek amacıyla yapılan bu çalışmada kazı yapılan 23 ayın 17 haftasında zaman kaybına dayalı etkinsizlik belirlenmiştir.

Duvarlılık analizleri vasıtasıvla arıza bekleme sürelerinin ortalama ve %45,434 oranında azaltılmasıvla etkinsiz olan 17 ayın etkin hale gelebileceği belirlenmiştir. Ayrıca ortalama azalma oranı vasıtasıvla isletme tarafından belirlenen %24.43'lük çalışma veriminin %40,86'ya çıkartılabileceği tespit edilmiştir. Çalışma veriminin daha da artırılabilmesi için zorunlu bekleme süreleri üzerinde de bir iyileştirme calismasinin yapılması gerektiği sonucuna varılmıştır.

Malmquist TFV analizi sonucunda aylık verimlilik değişimleri incelenmiş ve verimsizlik sebebinin genel arızalar özelliklede su ve hava kesintilerinden kaynaklandığı tespit edilmiştir.

Etkinsizlik durumunun ortadan kaldırılabilmesi icin; kazı isleminde kullanılan makine ve ekipmanın perivodik bakımlarının zamanında yapılarak arıza meydana gelebilecek durumların önceden tespit edilmesi ve ortadan kaldırılması gerekmektedir. Alınan önlemlere rağmen meydana gelebilecek arızaları en kısa zamanda tamir edebilmek için yeterli miktarda yedek parça ve kalifiye eleman bulundurulmalıdır.

Prosedür gereği çalışılmayan zorunlu bekleme sürelerinin en aza indirilebilmesi için iyi bir iş organizasyonu ve iş takibi gereklidir. Bu sayede kazı maliyetlerinde düşüşler meydana gelirken kapasite kullanım oranları ve karlılıklarında da artışlar gözlenebilecektir.

Calışmaya başlamadan önce kazı vapılacak hat boyunca icinden geçilecek kayaçların özellikleri hakkında bilgi edinilmeye çalışılsa da özellikle maddi sebepler yüzünden yeterli hazırlık yapılamamakta ve kazı esnasında beklenmedik durumlarla karsılasılabilmektedir. Bu tür problemlerle karşılaşmamak veva karşılaşılacaksa da en kısa zamanda ve minimum maliyetle sorunları çözebilmek için ayrıntılı bir ön çalışmanın yapılması gerekmektedir. Ayrıca dış kaynaklı elektrik ve su kesintileri gibi sistem dışı durumların olasılıkları incelenerek gerekli tedbirler alınmalıdır.

Bu calismada ariza ve bekleme süreleri dikkate alınarak TBM performansinin arttırılabileceği çalışılmıştır. gösterilmeye TBM'in teknik özellikleri kazı yapılan kayacın özellikleri kazı ve alanı organizasyonun birlikte

değerlendirilmesi sonucunda daha net sonuçlar elde edilebilecektir.

TEŞEKKÜR

Bu bildiride kullanılan verilerin sağlanmasındaki katkılarından dolayı (İLCİ Bağbaşı Barajı ve Mavi Tünel İnşaatı) İnş. Müh. Şantiye Şefi U. Emre KARATAŞ'a teşekkür ederiz.

KAYNAKLAR

- Al-Shammari, M, 1999. Optimization Modelling for Estimating and Enchancing Relative Efficiency with Application to Industrial Companies. European Journal of Operational Research. 115, p.488-496.
- Barton, N, 1999. TBM performance estimation in rock using QTBM. www.convertingtoday.co.uk/story.asp?stor ycode=1372
- Barton, N, 2000. TBM tunnelling in jointed and faulted rock. Balkema. Rotterdam. p 173. boks.google.com
- Charnes, A; Cooper, W; Rhodes, E, 1978. Measuring the Efficiency of Decision Making Units European Journal of Operational Research, Vol 2, Issue 6, p.429-444.
- Cingi, S; Armağan T, 2000. Türk Banka Sisteminde Performans Ölçümü DEA-Malmquist TFP Endeksi Uygulaması, Türkiye Bankalar Birliği Araştırma Tebliğleri S.: Sayı:2000-01.
- Coelli, T.J; Rao, D.S.P and G.E, Battese, 1998. An Introduction to Efficiency and Productivity Analysis, Kluwer, Boston, http://books.google.com.
- Coelli, T J, 1996. "A Guide to DEAP Version 2.1: A Data Envelopment Analysis (Computer) Program." Center for Efficiency and Productivity Analysis (CEPA) Working Paper 96/08. University of New England.
- Fare, R, S. Grosskopf and C.A.K. Lovell, 1994. "Production Funtions", Cambridge University
- Fuoco, S; Oreste, P, 2009. The Tunnel Boring Machine Advancements in Horizontal and

Up-Hill Tunnels. American Journal of Applied Sciences 6 (6): 1126-1132. 2009.

- Gong, QM; Zhao, J, 2009. Development of a rock mass characteristics model for TBM penetration rate prediction. Int J Rock Mech Min Sci 46(1) p.8-18
- Grifell-Tatje, ,. and Lovell, C. A. K, 1995. A note on the Malmquist productivity index. Economics Letters, 47, p.169–175
- Grosskopf, S, 1986. The Role of the Reference Technology in Measuring Productive Efficiency. Economic Journal. Vol. 96. No. 382. p 499-513.
- Hamidi, JK; Shahriar. K; Reza,. B, and Rostami, J, 2010. Performance prediction of hard rock TBM using Rock Mass Rating (RMR) system. Tunnelling and Underground Space Technology. 25, p.333-345
- Hassanpour, J; Rostami, J; Khamehchiyan, M; Bruland, A, and Tavakoli, H.R, 2009.
 TBM Performance Analysis in Pyroclastic Rocks. A Case History of Karaj Water Conveyance Tunnel (KWCT). Journal of Rock mechanics and Rock Engineering.
- Oraee, K, 2010. TBM Performance Prediction in Iran. Tunnels & Tunelling International.
- Ramezanzadeh, A; Rostami, J; Tadic, D, 2005. Impact of Rock Mass Characteristics on Hard Rock TBM Performance. 13th Australian Tunneling Conference, Melbourne, Australia.
- Ribacchi, R; Lembo-Fazio, A, 2005. Influence of rock mass parameters on the performance of a TBM in a Gneissic formation(Varzo tunnel). Rock Mech Rock Eng 38(2), p.105–127
- Sapigni, M; Berti, M; Behtaz, E; Busillo, A; Cardone, G, 2002. TBM performance estimation using rock mass classification. Int J Rock Mech Min Sci Geomech Abstr 39, p.771–788
- Seiford, L.M, 1996. Data envelopment analysis: The evolution of the state of the art (1978–1995). Journal of Productivity Analysis 7. P.99–137.
- Yagiz, S, 2007. Utilizing rock mass properties for predicting TBM performance in hard rock condition. Tunn Undergr Space Technol 23(3), p.326–339

Halkapınar-Otogar Projesi İçin TBM Tarafından Tünel Kazısı Sırasında Yapılar Üzerine Etkilerinin İncelenmesi Investigation of the Effects on the Buildings During the Tunnel Excavation by TBM for Halkapınar-Otogar Project

T. Onargan, C. O. Aksoy, K. Küçük, V. Özacar

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Maden Mühendisliği Bölümü, İzmir-Türkiye

ÖZET İzmir Hafif Raylı Sistem (İZRAY) kapsamında açılması planlanan Halkapınar–Otogar HRS projesinde neojen'e ait çökeller içinde açılacak olan delme tünelin EPB-TBM ile açılması halinde yeryüzündeki yapılara vereceği olası zararlar değerlendirilmiştir. Çalışmada açılacak delme tünel çapının mevcut zemin koşullarına ve jeoteknik yapıya göre seçimi de gerçekleştirilmiştir. Analizler sonucunda söz konusu tünel hattında maksimum 7 metre çaplı ikiz tünel açılması halinde oluşacak zemin deformasyonlarının izin verilen sınırlar içerisinde kalacağı belirlenmiştir.

Anahtar Kelimeler: Sığ Tünel, EPB-TBM, Zemin çökmeleri

ABSTRACT İzmir Light Rail Transit System (İZRAY) Halkapinar-Bus Station is scheduled to open within the scope of the HRS project, which will be driven in Neogene sediments of the excavation with the opening of the tunnel in case of EPB-TBM any potential damage to structures on earth were evaluated. In this study, the diameter of the bored tunnel will be opened according to the existing ground conditions and geotechnical structure, selection was carried out. Result of the analysis in question in the opening of the tunnel line will consist of a maximum of 7 meters diameter twin tunnels is determined to remain within the limits allowed deformations of the ground.

Keywords: Shallow Tunnel, EPB-TBM, Subsidence

1. GİRİŞ

Metro tüneli kazılarında, kazı sonrası tünel duvarlarında olusan konverjans ve yeryüzünde oluşan ve yüzeyde bulunan yapılara hasar veren, hatta yıkılmalarına neden olan oturmaların(tasmanın), müsaade edilebilir değerler arasında tutulabilmesi çok önem taşımaktadır. Yeraltı tünel geçişinin kazısı ve yapımı sırasında yüzeyde ve bina temellerinde hiç bir yerde ve hiç bir doğrultuda 10-20 mm'ye kadar olacak oturmaların hasar vermeyeceği literatürde (Attewell vd, 1986) belirtilmesine nedeniyle, güzergah üzerinde bulunan binaların eski ve güzergahın deprem kuşağında olması da göz

önünde alınarak bu değerden büyük deformasyonlar (oturma ve/veya toplam gevşeme) oluşmayacak şekilde çalışılması ana ilke olarak benimsenmesi gerekmektedir. Bu çalışma kapsamında, İZRAY Projesi kapsamında bulunan İzmir Hafif Raylı Sistemi III. Aşama'sı olarak önceki yıllarda planlanmış olan Halkapınar – Otogar arasında yer aldığı güzergah incelemelerimiz onaylı projeler üzerinden (35202-001 ila 35202-011 no'lu güzergah paftaları) kapsamında önceki bilgiler ve raporlar ışığında değerlendirilmiştir.

Bu bildiride öncelikli olarak ele alınıp incelenen Yapı Teknik Mühendislik Müşavirlik Ltd. Şti. tarafından hazırlanmış olan Şubat-2006 tarihli "*İzmir Hafif Raylı Sistem Projesi 3. Aşama Halkapınar – Otogar Bağlantısı Jeoteknik raporu*" nda mevcut jeoteknik bilgiler ve değerlendirmeler esas alınmıştır. Şekil 1'de incelenen güzergahın yerleşim alanlarına göre konumunu veren uydu haritası ve güzergah hattı bir arada görülmektedir. Gerçekleştirilmiş olan sondaj verileri ve bu sondajlardan elde edilen örnekler üzerinde yapılmış olan laboratuvar test sonuçları ve sahada yerinde yapılmış olan test verilerine göre geçilecek olan zeminlerin mühendislik özellikleri hakkında ön bilgiler elde edilmiş ve bu bilgilere dayanılarak bazı ön analizler gerçekleştirilmiştir.

Şekil 1. İncelenen güzergah

2. GENEL JEOLOJİK YAPI

İncelenen güzergah, kısmen İzmir körfezi grabeni ve kısmen Bornova ovası içinde yer almaktadır. Şekil 2'de çalışma alanına ait 1/5.000 ölçekli pafta karelajı içerisinde jeolojik birimlerin dağılımı ve güzergah lokasyonu bir arada verilmiştir. İnceleme alanının topografyasına bakıldığında, Halkapınar yöresinin + 2-4 metre kotlarında olduğu ve topografyanın doğuya doğru yükselerek Otogar yöresinde 24–26 kotlarına ulaştığı görülmektedir. Halkapınar yöresinde, elli metre derinliğe kadar yapılan sondajlarda, Otogar yöresinde otuz metreye kadar yapılan sondajlarda neojen'e ait çökeller içinde kalınmış ve ana kayaya ulaşılamamıştır. Bu gözlemler sonucu, Halkapınar – Otogar HRS projesi ile ilgili açılacak yer altı açıklıklarının alçak ova tabanında neojen'e ait çökeller içinde kalacağı belirlenmiştir(Şekil 2). Söz konusu güzergahta "*Silt-Kil Ağırlıklı Zemin*" ile güzergahın otogar tarafında "*Kum-İnce Çakıl Ağırlıklı Zemin*" içerisinde çalışılacaktır (Yapı Teknik Proje, 2006).

Şekil 2.Çalışma alanına ait 1/5.000 ölçekli pafta karelajı içerisinde jeolojik birimlerin dağılımı(Kıncal, 2004)

2.1 Halkapınar Yöresi

Yüzeyde 2-3 metre kalınlıkta dolgu malzemesi geçildikten sonra, ilk 15 –17 metrede SPT değerleri 10'u geçmeyen gevşek killere veya killi siltlere rastlanmaktadır. Bu gevşek malzemenin altında 7-8 metre kalınlığında kum ve çakıl karışımından oluşan sert bir tabaka görülmekte ve bunun da altında sert, plastisitesi değişken siltli kil veya killi silt tabakalarına rastlanmaktadır.

2.2 Otogar Yöresi

Otogar yöresinde killi çakıl veya çakıllı kil ardalanması 30 metre derinliğe kadar devam etmektedir. Bundan sonra yer yer çakıl cepleri içeren sert killer görülmektedir. Yapılan incelemeler ve değerlendirmeler sonucu, Halkapınar'da gözlenen gevşek kil veya killi silt tabakalarının gittikçe incelerek otogar yöresine kadar uzandığı tahmin edilmektedir.

2.3 Yeraltı Suyu Durumu

Halkapınar yöresinde yer altı suyu yüzeye çok yakındır. Mevcut zeminin yaklaşık 2 metre altında yer altı suyu tabakasına rastlanmaktadır. Diğer bir deyimle, yer altı suyu kotu 0.00 alınabilir. Otogar yöresinde ise yer altı suyu tabii zeminin yaklaşık 10 – 15 metre altına gözlenmiştir. *"İzray İzmir Hafif Raylı Sistemi 3. Aşama Jeoteknik Değerlendirme Raporu"* başlıklı çalışma kapsamında açılan sondajlarda tünel güzergahı ve diğer aç-kapa inşaat kazı kotları üzerinde yeraltı su seviyeleri tespit edilmiştir (Yapı-Teknik Proje, 2006). Tünel güzergahı civarında yeraltı suyu derinliği 2-4 metre ile 6-12 metre aralığında görülmektedir.

3. TÜNEL AÇMA MAKİNESİ İLE YAPILACAK TÜNEL KAZISININ ÜST YAPILARA OLASI ETKİLERİNİN ANALİZLER İLE DEĞERLENDİRİLMESİ

İncelenen tünel güzergahında güzergah boyunca yoğun yapılaşma olması(Şekil 3), binaların eski ve deprem yönetmeliği öncesi yapılmış olması ve zemin durumu da göz önüne alınarak analitik çözümleme ile olası tünel boyutları teknik açıdan incelenmiştir. Analitik inceleme sonrasında oluşan sübsidanstan dolayı binalarda ağır hasarlar olabileceği görülmüstür. Bu sebeple. güzergah üzerinde 7 m capında cift tüp tünel açılması durumu öngörülmüştür. Çizelge 1'de tünele ait parametreler verilmektedir (Aksoy vd.. 2012).

Cizelge 1.	7 Metrelik delme tüne	l icin pro	oje teknik	parametreleri ve	formasyon özellikleri
1 . 0		3 1			

	-
Teknik Parametreler	Değer
Tünel Kazı Çapı (m)	7
Tünel Örtü Kalınlığı (m)	14,58
Zemin Kotu (Siyah Kot)	+14,25
Ray Kotu (m)	-8,25
Yer altı Su Seviyesi (m)	10-12
Geçilen hakim zemin	Sarı, yeşil renkli orta katı-çok katı kıvamdaki doygun kil (yer yer kumlu çakıllı (SPT= 9-26)
Ortalama Doğal Birim Hacim Ağırlığı (g/cm ³)	1,85
Ortalama drenajsız kayma dayanımı-kohezyon t/m ² (MPa)	2,8 (0,028)
Ortalama Elastisite Modülü t/m ² (MPa) (*)	4000 (39,2)

3.1 7 Metre Çaplı İkiz Tüneller İçin Oluşacak Zemin Çökmeleri ve Üst Yapılara Etkilerinin Belirlenmesine Yönelik *Ground Loss* Analiz Sonuçları

HRS güzergâhı üzerinde yer alan Kemalpaşa Caddesini tam ortalayacak şekilde orta çizginin 5 er metre sağında ve solunda olmak üzere tünel akslarının 8,5 metre sağda ve solda oluşturulacağı 7 metre çaplı ikiz tünellerin açılması halinde meydana gelecek sübsidans miktarları ve etki sahasına giren binalarda meydana gelecek olası hasarların incelenmesi sonucunda aşağıda Çizelge 2. de açıklanan sonuçlar elde edilmiştir.

Parametre Türü	Değer	
Tünel Derinliği (ort) (H), m	14,58	
Tünel Eksen Derinliği (Z _o)	18.08	
Tünel Kazı Çapı (D)	7,0	
Çökme Çanağı Genişliği Parametresi,	14,30 (Maks.	
Kıvrılma Noktası (i), m	14,97)	
Çökme çanağı genişliği (L= 6i), m	85,30	Sınır
		Değer
Stabilite Sayısı (N)	5-6	< 2
Maksimum Sübsidans Miktarı (S _{max}), mm	21,85	10
D çaplı tünelde meydana gelen hacimsel	1,04	0,50 - 1,50
kayıp %		
Açısal Çarpıklık Değeri, maksimum eğim	8,7*10 ⁻⁴	0,005
(ds/dx)	(1/1150)	(1/500)

Çizelge 2. İkiz Tünel İnşaası Sırasında Öngörülen Sübsidans Parametreleri

Aşağıda Şekil 4'te Ground Loss çözümlemeleri için oluşturulmuş olan 7 metrelik iki adet delme tünel analizi için kazı ve bina modeli verilmektedir. Bu modelde çökme çanağı genişline 3 adet yapının her iki taraftada gireceği hesaplanmış ve model ona göre oluşturulmuştur. Şekil 5. de ise "Klasik Teori-Limanov" kullanılarak zemin özellikleri girilerek yapılan analizde meydana gelen çökme çanağı ve belirlenen maksimum sübsidans miktarı (21,85 mm) verilmiştir. Şekil 6.da 7 metrelik ikiz delme tünel analizi sonucu elde edilen Çökme (Sübsidans), Yatay Deformasyon, Yatay Gerilim ve Eğim grafikleri bir arada verilmektedir. Şekil 7. de ise 7 metrelik ikiz delme tünel analizi sonucu oluşan çekme

gerilmese bağlı bina hasarları, Şekil 8. de 7 metrelik ikiz delme tünel analizi sonucu oluşan eğime bağlı bina hasarları ve son olarak Şekil 9 da 7 metrelik ikiz delme tünel analizi sonucu binalarda oluşan relatif deplasman miktarları verilmiştir.

Yapılan analiz sonuçlarından da görüleceği üzere incelenen bölümde oluşan çökme ve deplasman büyüklüklerinin tamamı izin verilen sınırlar içersinde kalmaktadır. Güzergah boyunca karşılaşılacak farklı zemin koşullarında ise ek önlemlerle proje şartlarının iyileştirilmesi de gerekebilecek olup, bu durumun göz ardı edilmemesi gerekmektedir.

1251

T. Onargan, C.O. Aksoy, K. Küçük, V. Özacar

Şekil 3. Tünel güzergahı üzerinde yapılaşmanın yoğun olduğu bölgeler

Şekil 4. 7 metrelik iki adet delme tünel analizi için kazı ve bina modeli

Şekil 5. 7 metrelik ikiz delme tünel analizi çökme çanağı ve oluşacak maksimum sübsidans miktarı(Çökme Çanağı Genişliği = 85,30 m., S_{maks}= 21,85 mm.)

Şekil 6. 7 metrelik ikiz delme tünel analizi sonucu elde edilen Çökme (Sübsidans), Yatay Deformasyon, Yatay Gerilim ve Eğim grafikleri

Şekil 7. 7 metrelik ikiz delme tünel analizi sonucu oluşan çekme gerilmese bağlı bina hasarları

Şekil 8. 7 metrelik ikiz delme tünel analizi sonucu oluşan eğime bağlı bina hasarları

Şekil 9. 7 metrelik ikiz delme tünel analizi sonucu binalarda oluşan relatif deplasman miktarları

3.2 Tünel Kazısında Ayna Stabilitesi Ve Kazının Üst Yapılara Zarar Vermemesi İçin Gerekli Görülen İzleme Önlemleri

Halkapınar – Otogar arası delme tünel şeklinde geçilecek olan kazı alanında yapılacak yeraltı kazı çalışmalarının üzerinde yerleşim alanları ve yerüstü tesislerinin bulunduğu göz önünde bulundurularak, yeraltı jeolojik ve jeoteknik koşulların çok iyi değerlendirilerek tünel açma işlemlerinin programlanması gerekmektedir.

Güzergahın tamamında yumuşak zemin özelliği gösteren formasyonlardan geçecek olan tünel çalışmasında, içinde tünel açılacak ortamın kompleks yapıda olması nedeniyle çok dikkatli olunması ve önlemlerin önceden düşünülerek imalat yapılması zorunluluğu bulunmaktadır. Ayrıca belirli periyotlarda da güzergahın geçtiği yerlerde etki alanı içerisinde kalan yeryüzünde ve yapılarda ölçüm ve gözlemlerin yapılması zorunluluğu bulunmaktadır. Tünel inşaasında tünel açımı

3.3 Proje Kapsamında Olası Zemin İyileştirme Yöntemleri Hakkında Değerlendirmeler

İzmir Hafif Raylı Sistemi, 3. aşama 2. Kısım Halkapınar – Otogar bağlantısı projesinde "zemin iyileştirme" çalışmalarının sırasında gözlem ve kontrol ölçüm çalışmalarında izin verilen yüzey çökme (sübsidans) ve deformasyon sınır değerleri aşağıda çizelge halinde verilmiştir(Çizelge 3.).

Çizelge 3. Yeryüzü bina ve alt yapı tesislerinde izin verilen sübsidans ve deformasyon sınır değerleri

	YEŞİL	< 10
Sübsidans (mm)	SARI	10 - 20
	KIRMIZI	> 20
	YEŞİL	< 1/1000
Açısal Çarpıklık	SARI	1/1000 -
Değeri		1/ 500
(m/m)	KIRMIZI	> 1/ 500
	YEŞİL	< 0.15
Yatay	SARI	0.15 - 0.20
Deformasyon	KIRMIZI	> 0.20
(%)		

"jet grouting" yöntemi ile yapılması incelenen *Jeoteknik Rapor-2006* kapsamında önerilmektedir. Bu yöntemin güzergahta uygulanması durumunda kullanılacak jet-grout yöntemi ne olursa olsun, uygulanacak delik aralığı ve basınç, enerji ve karışım yerinde yapılacak deneyler sonucu belirlenmesi gerekmektedir. Bu konuda zeminlerin mühendislik özellikleri cok ivi belirlenmeli ve uvgulanacak ivilestirme yöntemi ne olursa olsun, önerilen yöntemin uygulama yöntemi ve elde edilen iyileştirme sonuçları yerinde yapılacak arazi deneyleri ile belirlenmelidir. Bu amaçla uygulamayı yapacak uzman firmanın deney yöntem ve programını hazırlayıp kontrollük teşkilatına sunması ve deneylerin uzman kisiler denetiminde yapılarak değerlendirilmesi önem arz etmektedir.

Proje kapsamında tarafimızdan incelenmesi önerilen diğer bir iyileştirme yöntemi açılacak olan sığ tünel kazısında tavan kemerinin "*Çimento Enjeksiyonu*" ile iyileştirilmesidir(Şekil 10). Bu yöntem birçok benzer projelerde uygulanmış ve aşağıda sıralanan olumlu sonuçlar elde edilmiştir. İncelenen kaynaklarda ve alınan geri bildirimlerde bu yöntemin uygulanması sonucunda aşağıdaki avantajların elde edildiği rapor edilmektedir. Bunlar;

- Tavan basıncı rijit bir kemerle taşındığından göçük olasılığı etkin bir şekilde azaltılmıştır.
- Yeryüzü sübsidans ve deformasyonları büyük ölçüde azaltılmıştır.
- Basınç altında çalışan TBM'de "kazı odası" nda tamir-bakım çalışmaları için "güvenli ortam" sağlanmıştır.
- Proje zamanında sapmalar önlenmiştir.

şeklinde sonuçları içermektedirler.

İyileştirmenin başarısında önemli bir faktörde etkin su drenajı ve kontrolünün yapılmasındaki zorunluluktur.

Şekil 10. Çimento Enjeksiyonu ile tavan kemerinin iyileştirilmesi

4 SONUÇLAR VE TARTIŞMA

Bu çalışma kapsamında İzmir Hafif Raylı Sistem Projeleri kapsamında Otogar-Halkapınar güzergahında açılması planlanan EPB TBM tünelinin çevresel etkilerini ve kazı-tahkimat aşamalarını tanımlayabilmek amacıyla daha önce yapılmış olan jeoteknik sondaj ve laboratuvar deneylerine dayalı ön değerlendirme çalışması yapılmıştır. Yapılan ön değerlendirmeler sonucunda 7 m çapında 2 tünel açılmasının daha uygun olduğu görüşü oluşmuştur. Bu görüşle birlikte yapılan çalışmalar kapsamında yapılan analizlerde elde edilen sonuçlar incelendiğinde, modelde oluşan toplam sübsidans (oturma) miktarının 21,85 mm, yatay deformasyonların 3 mm olduğu tespit edilmiştir. Bu çalışma sonucunda EBP TBM ile açılacak 7 m çapındaki ikiz tünellerin stabil olacağı ve çevredeki vapılarda önemli bir hasara neden olmayacağı belirlenmiş olmakla beraber, tünel açma işleri esnasında geçilecek olan özellikle cakıllı zeminlerde ve iri taneli siltkil geçişlerinde tünel üzerinde gerekli verlerde küçük bir enjeksiyon katmanı oluşturmaya yönelik uygulamalar tarafımızca önerilmiştir.

Halkapınar – Otogar HRS projesi ile ilgili açılacak yer altı açıklıklarının alçak ova tabanında neojen'e ait çökeller içinde kalacağı kesindir. Söz konusu güzergahta "Silt-Kil Ağırlıklı Zemin" ile güzergahın otogar tarafında "Kum-İnce Çakıl Ağırlıklı Zemin" içerisinde çalışılacaktır.

İncelenen tünelde de yaklaşık olarak (C/D) oranı 0,54 < 2 şeklinde yani sığ tünel koşulları geçerli olup, stabilite sayısı bakımından yapılan değerlendirmede lokal olarak avna venilmeleri ve stabilite problemleri yaşanması kaçınılmaz olacağı İncelenen güzergahta görülmektedir. Çamdibi ve Altındağ bölgesi için tünelin açıldığı jeolojik ortam için yapılan değerlendirmeler sonucunda stabilite sayısının (N) 6 nın üzerinde iken (6,31), Otogara yaklaşıldığında 5 in üzerinde olduğu (5,14) görülmektedir.

Ground Loss çözümlemeleri için oluşturulmuş olan 7 metrelik iki adet delme tünel analizi için kazı ve bina modeli oluşturulması sonucunda elde edilen çökme canağı genişline 3 adet yapının her iki taraftada gireceği hesaplanmıştır. "Klasik Teori-Limanov" kullanılarak zemin özellikleri girilerek yapılan analizde

meydana gelen çökme çanağı ve belirlenen maksimum sübsidans miktarı (21,85 mm) belirlenmiştir. 7 metrelik ikiz delme tünel analizi sonucu elde edilen Çökme (Sübsidans), Yatay Deformasyon, Yatay Gerilim ve Eğim grafikleri elde edilmiş ve ayrıca analizde 7 metrelik ikiz delme tünel analizi sonucu oluşan çekme gerilmesine bağlı bina hasarları, ve eğime bağlı bina hasarları ve de binalarda oluşan relatif deplasman miktarları belirlenmiştir. Bu analiz sonuçlarından da görüleceği üzere bölümde oluşan çökme ve incelenen deplasman büyüklüklerinin tamamı izin verilen sınırlar icersinde kalmaktadır. Güzergah boyunca karşılaşılacak farklı zemin koşullarında ise ek önlemlerle proje şartlarının iyileştirilmesi de gerekebilecek olup, bu durumun göz ardı edilmemesi gerekmektedir.

TEŞEKKÜR

Bu çalışma, ESER MÜHENDİSLİK MÜŞAVİRLİK A.Ş. tarafından desteklenmiştir. Yazarlar teşekkür eder.

KAYNAKLAR

- Aksoy CO., Onargan T, Küçük K. Pamukçu P, Özacar V., vd., (2012), Kemalpaşa-Torbalı Ve Alsancak Limanı Bağlantısı Demiryolu Etüd Proje Ve Mühendislik İşi Ön Raporu.
- Attawell, P.B., Yeates, J., Selby, A.R., (1986); "Soil Movement Induced by Tunnelling and Their Effects on Pipelines and Structures", New York, Chapman and Hall..
- Kıncal C., (2004), İzmir İç Körfezi Çevresinde Yer Alan Birimlerin Coğrafi Bilgi Sistemleri ve Uzaktan Algılama Teknikleri Kullanılarak Mühendislik Jeolojisi Açısından Değerlendirilmesi. D.E.Ü. Fen Bilimleri Enstitüsü Doktora Tezi, 3420 sayfa. İzmir.
- Yapı-Teknik Proje, (2006), İzmir Hafif Raylı Sistem Projesi 3. Aşama Halkapınar – Otogar Bağlantısı Jeoteknik raporu

Sığ Tünellerde ve Galerilerde Yenilme Türleri Failure Modes in Shallow Tunnels and Galleries

U. Sakız, H. Gerçek Bülent Ecevit Üniversitesi, Maden Mühendisliği Bölümü, Zonguldak

ÖZET Kaya kütlelerinde oluşturulan sığ tünellerin ve galerilerin duraylılığı, inşaat ve maden mühendisliğinde oldukça özel ama önemli bir ilgi alanıdır. Bu çalışmada, sığ derinliklerde kazılan dairesel yeraltı açıklıklarında meydana gelen yenilme türleri incelenmiştir. Öncelikle, sığ tünel kavramı üzerinde durulmuş ve sığ yeraltı açıklıklarının duraylılığını etkileyen önemli faktörler özetlenmiştir. Sonra, sığ tünellerde gözlemlenen önemli yenilme türlerine değinilmiştir. Daha sonra, sığ tünellerde karşılaşılan yenilme geometrilerini belirlemek amacıyla, iki-boyutlu sonlu elemanlar gerilme çözümlemesini kapsayan bir bilgisayar yazılımı kullanılarak, bir dizi değiştirgesel çözümleme yapılmıştır.

Çözümlemelerde, sığ bir dairesel tünelde birincil gerilmelerin çeşitli birleşimlerinin duraylılığa etkileri incelenmiştir. Birincil gerilme asal bileşenlerinin derinlikle değiştiği bir kaya kütlesinde yer alan tünelin farklı derinliklerdeki durumları göz önünde bulundurulmuştur. Bu amaçla, birincil gerilmelerin, açıklık çevresinde oluşan ve yenilme potansiyeli yüksek olan bölge geometrisine etkileri irdelenmiştir. Çeşitli durumlarda elde edilen aşırı gerilme bölgelerinin bağıl büyüklüklerini karşılaştırmak için bir indis (IOZ: aşırı gerilme bölgesi indisi) kullanılmıştır.

ABSTRACT The stability of shallow tunnels and galleries is rather specific but an important area of interest in civil and mining engineering. In this study, failure modes occurring in circular tunnels excavated at shallow depths have been investigated. First, the concept of shallow tunnel was emphasized, and the factors that affect the stability of shallow underground openings were summarized. Then, the important failure modes observed in shallow tunnels were mentioned. Finally, in order to determine the failure geometries encountered in shallow tunnels, a series of parametric analyses were carried out by using a computer code that involved two-dimensional finite element stress analysis.

In the analyses, the effects of various combinations of in-situ stresses on the stability of a shallow circular tunnel were investigated. Different depths were considered for the tunnel located in a rock mass where the principal in-situ stresses varied with depth. For this purpose, the effects of in-situ stresses on the geometry of the region, occurring around the opening and having failure potential, were examined. An index (i.e., IOZ: index of overstressed zone) was used for comparing the relative sizes of overstressed regions obtained from various cases.

1 GİRİŞ

Sığ derinliklerde açılan tüneller, günümüzde şehir içi toplu ulaşımın vazgeçilmez bir parçası olan yeraltı metro sistemlerinde yaygın olarak ınşa edilen yapılardır. Bunun yanında; ulaşım, taşıma ve altyapı hizmet tünellerinin de sığ derinliklerde inşa edildiği durumlarla sıkça karşılaşılmaktadır. Yeraltı madenciliğinde ise, çok sık olmasa da, sığ derinliklerde galeriler açılmaktadır. Özellikle, yeraltı ocaklarına giriş galerilerinin ilk kısımları, kaçınılmaz olarak sığ derinliklerde kazılmaktadır.

Genellikle derin yeraltı açıklıklarının kaya kütleleri içinde tasarımına alışkın olan maden mühendislerinin, sığ yeraltı açıklıklarının veterli davranışı konusunda derecede deneyimlerinin olmadığı söylenebilir. Buna karşılık, sığ tünellerin büyük çoğunluğunun zemin türü ortamlarda açılması, zemin mekaniği kavram ve uygulamalarında daha yetkin olan insaat mühendisleri açısından bir avantaj olarak görünebilir. Ancak, inşaat mühendisleri de, kaya kütlelerindeki yeraltı kazıları konusunda bazen deneyim eksikliği çekmektedirler. Sığ tünel problemi, zemin veya kaya kütlesi gibi jeolojik ortamlarda oluşturulan kazılarla ilgilenen mühendislik jeolojisi uzmanlarının da ilgi alanına girmektedir. Özetle, kaya kütlelerinde oluşturulan sığ tünellerin duraylılığının; inşaat sektörü, madencilik ve mühendislik jeolojisi için oldukça özel ama önemli bir ilgi alanı olduğu sövlenebilir.

Bu bildiride, zayıf kaya kütlelerinde ve sığ derinliklerde açılan dairesel kesitli tünellerde duraylılığı etkileyen faktörlerin ve yenilme geometrilerinin incelendiği bir araştırmanın bulguları (Sakız 2012) özetlenmiştir

Önce, sığ tünel kavramı üzerinde durulmuş ve sığ tünellerin duraylılığını etkileyen önemli faktörler özetlenmiştir. Sonra, sığ tünellerde gözlemlenen önemli yenilme türlerine değinilmiştir. Daha sonra, dairesel kesitli sığ tünellerde karşılaşılan yenilme türlerini belirlemek amacıyla, iki boyutlu jeomekanik problemlerinin elasto-plastik gerilme çözümlemesini yapabilen bir sonlu elemanlar bilgisayar yazılımı kullanılarak, bir dizi değiştirgesel çözümleme yapılmıştır.

2 SIĞ TÜNELLER VE DURAYLIKLARI

2.1 Sığ Tünel Kavramı

Tünellerin "sığ" olarak tanımlanmasında en belirleyici özellik derinlikle ilgili olanıdır. Yeraltı açıklığı derinliğinin, açıklığının genişliğine oranı olan "bağıl derinlik" (H/D) değeri göz önünde bulundurularak yapılan değerlendirmelerde, teknolojik ve mekanik yaklaşımlardan yararlanılabilir. Teknolojik deneyim açısından; zemin türü ortamlarda, $H/D \le 3$ olduğu zaman, tünel "sığ" olarak nitelendirilmektedir (Peck vd. 1972).

Mekanik açıdan, yeraltı açıklığı yüzeyinde oluşan ikincil (teğetsel) gerilmeleri göz önünde bulunduran bir yaklaşımdan da söz edilebilir. Sığ tünelin, basitçe, yarı sonsuz bir jeolojik ortamda oluşturulan dairesel bir açıklık olduğu göz önünde bulundurulursa; tünel yüzeyinde oluşan ikincil gerilmelerin, birincil gerilmelerin derinlikle değişiminden ve yeryüzünden etkilenmesi kaçınılmazdır. Bu gerilmelerin, derinde (sonsuz genişlikteki bir jeolojik ortamda) oluşturulan bir dairesel tünelin yüzeyinde oluşan gerilmelerden önemli derecede ($\geq |\%$ 10|) saptığı H/D ≤ 5 durumlarda, tünel "sığ" olarak kabul edilir (Ewoldsen 1968, Gerçek 1990).

2.2 Sığ Tünellerin Duraylılığı

Sığ tüneller, derin yeraltı açıklıklarının duraylılığını etkileyen faktörlere ek olarak, yeryüzü ile etkileşimlerinden kaynaklanan diğer faktörlerden de etkilenmektedir.

Öncelikle; tüneli çevreleyen ortamın jeolojik yapısı, yeraltı suyu koşulları ve kaya kütlesinin jeomekanik özellikleri yanında, çok değişken olabilen birincil gerilme alanı doğal faktörler olarak karşımıza çıkmaktadır. Ayrıca; tünelin konumu (bağıl derinliği), açıklık geometrisi (şekli ve boyutları), uygulanan kazı ve tahkimat yöntemleri ile uygulamanın niteliği de duraylılığı etkileyen ve kontrolümüz altındaki teknolojik faktörler arasında sayılabilir. Bütün bunlara ek olarak, topografya ve yapılaşmadan kaynaklanan yeryüzü etkileri de, sığ tünel veya galerilerde duraylılığı önemli ölçüde etkilemektedir (Şek. 1).

Sekil 1. Sığ tünel veya galerilerde duraylılığı etkileyen faktörler (Töyrä'den [2006] değiştirilerek)

3 SIĞ TÜNELLERDE YENİLMELER

3.1 Genel Düşünceler

Sığ tünel veya galerilerde gözlemlenen yenilme türleri, yüksek olmayan birincil gerilme koşullarında ve düşük nitelikli kaya kütlelerinde oluşturulan yeraltı kazılarında karşılaşılan arazi davranışlarıyla ilintilidir.

Düşük nitelikli kaya kütlelerindeki sığ tünellerde, derin tünellerde görülmeyen veya görülse bile çok da önemli olmayan bazı duraysızlık sorunlarıyla karşılaşılmaktadır (Hoek 2004):

 Yüzeye yakın kaya kütleleri, sığ konumda olusturulan açıklık nedeniyle, gerilme rahatlamasına, yoğun atmosferik etkileşimden kaynaklanan bozunmaya ve kazı (örneğin, patlatma) hasarına maruz kalmaktadırlar. Bu süreçler, kaya kütlesinin dayanım ve sekil değistirme özelliklerinin tanımlanmasında cok önemli bir rolü olan kaya blokları arasındaki kilitlenmeyi bozmakta veya yok etmektedir. Bu nedenle, yüzeye yakın kaya kütleleri, derinlerde var olan çevrelenmiş koşullardaki kaya kütlelerine kıyasla, daha hareketli olma eğilimindedirler.

• Yeryüzünün yakınlığı, tüneli çevreleyen ve kazı aynası önündeki kaya kütlesindeki yenilmenin, genellikle yüzeye doğru gelişen bir göçme eğilimi göstermesine yol açar. Bu olgu, zayıf kaya kütlesinde açılan derin bir tünelde oluşan "sıkışma" mekanizmasından farklıdır.

Sığ tünel veya galerilerde en sık gözlenen ve genellikle birbiriyle ilintili olan yenilmeler; açıklık tavanından başlayıp yeryüzüne ulaşan alçalmalar, kazı aynasındaki duraysızlıklar ve ayna gerisinde açıklık çevresinde oluşan yenilmeler ile ilgilidir (ITA 2007). Bu çalışmada, yalnızca, derinlikle artan birincil gerilme koşullarında açılan sığ bir dairesel tünelin kazı aynasından etkilenmeyen (aynadan uzaklığı > 2D olan) bir bölgesinde, açıklık çevresinde oluşan yenilmeler göz önünde bulundurulmuştur.

3.2 Başlıca Yenilme Türleri

Yatay ve düşey birincil gerilmelerin derinlikle değişiminin ihmal edilebildiği derin bir dairesel tünelde; açıklık çevresinde oluşması beklenen yenilme bölgeleri, problemin geometrisi ve sınır koşullarının simetrisi nedeniyle, tünelin düşey ve yatay çaplarına göre simetriktir. Ancak, sığ tünel probleminde, tünelin yer aldığı yarı-sonsuz jeolojik ortamı sınırlayan yeryüzünün varlığı ve derinliğe bağlı olarak artış gösteren birincil gerilmeler nedeniyle, problem geometrisi ve sınır koşulları yalnızca tünelin

Şekil 2. Kohezyonsuz zeminlerde açılan sığ tünellerde, birincil gerilme alanına bağlı olarak gelişen yenilme türleri (Wong ve Kaiser'den [1991] değiştirilerek)

düşey eksenine göre simetrik olmakta; yatay çapa göre simetri kaybolmaktadır.

Wong ve Kaiser (1991), kohezyonsuz zeminlerde açılan sığ dairesel tünellerdeki yenilme türlerini, yatay birincil gerilmelerin düşey birincil gerilmeye oranına ($k = P_h/P_v$) bağlı olarak üçe ayırmıştır (Şek. 2):

• I. Tür Yenilme: Yerel olarak yan duvarlarda başlayan bu yenilme türünde, derinlik (dolaysıyla da birincil gerilmeler) arttıkça yenilme bölgeleri karşılıklı olarak, önce omuzlara ve sonra da tavana doğru genişlemektedir; yeryüzüne ulaşan ve ulaşmayan türleri vardır.

• II. Tür Yenilme: Sürekli olarak tüm tünel yüzeyini çevreleyen bu yenilme türünde, tavanda daha geniş olan yenilme bölgesi bazen yeryüzüne de ulaşabilmektedir.

• III. Tür Yenilme: Yerel olarak tavanda ve tabanda oluşmaktadır.

Wong ve Kaiser'e (1991) göre; genellikle kritik bir birincil gerilme oranı (k_{cr}) değerinin altındaki koşullarda oluşan I. tür yenilme, bu değerin üzerindeki koşullarda II. türe dönüşmekte ve k > 1 durumlarında ise III. tür yenilme oluşmaktadır. Söz konusu yenilme türleri, her ne kadar kohezyonsuz zeminlerdeki sığ tüneller için önerilmişse de, kaya kütlelerinde açılacak sığ dairesel tünellerde de, yatay tünel çapına kıyasla daha belirgin bir simetriyle, benzer yenilmelerin oluşması beklenebilir.

Bu düşüncelerden hareketle; birincil gerilmelerin çok farklı birleşimlerinin yol açabileceği yenilme türlerini araştırmak, bağıl derinliğin bu yenilmelere etkisini incelemek amacıyla bir dizi değiştirgesel gerilme çözümlemesi yapılmıştır.

4 GERİLME ÇÖZÜMLEMELERİ

4.1 Problemin Geometrisi ve Koşulları

4.1.1 Tünel Geometrisi

Tünel geometrisi olarak, 5 m yarıçapında (alanı 78,5 m²) dairesel tünel seçilmiştir. Bu seçimde başlıca şu hususlar rol oynamıştır:

• Sığ tüneller için uygulanabilecek mevcut kapalı-tip matematiksel çözümler yalnızca dairesel kesitli tüneller için geçerlidir. Sayısal çözümlemelerin doğruluğunu kontrol ederken yapılacak karşılaştırmalarda, bu seçim büyük bir kolaylık sağlamaktadır. • Pratikte karşılaşılan sığ tünellerin birçoğu dairesel veya dairesele yakın (örneğin; at nalı) şekildedir.

4.1.2 Tünel Derinliği

Tünelin bağıl derinliği olarak üç farklı değer (H / D = 3, 6 ve 9) seçilmiştir.

4.1.3 Birincil Gerilme Alanı

Bu değiştirgesel çalışmada, göz önünde bulundurulan birincil gerilme alanlarının belirlenmesinde dikkat edilen hususlar aşağıda özetlenmiştir. Bu yaklaşımda, derin yeraltı açıklıklarında duraylılığın incelendiği diğer bir çalışmadan (Gerçek ve Geniş 1999) esinlenilmiştir.

Birincil gerilmelerin asal bileşenlerinin doğrultuları aşağıda tanımlanmaktadır (Şek. 3): • Pz: düşey birincil gerilme; Pz = γz (γ : örtü katmanının birim hacim ağırlığı [MN/m³] ve z: yeryüzünden olan derinlik [m]),

• Px: yatay birincil gerilme (tünel kesitine paralel ve tünelin düşey eksenine dik) ve

• Py: eksenel birincil gerilme (tünel kesitine dik ve tünelin uzunluğuna paralel).

Yatay konumlu asal birincil gerilmelerin düşey konumlu asal birincil gerilmeye oranları: $k_x = Px / Pz$ ve $k_y = Py / Pz$ olarak tanımlanmış olup, çözümlemeler için bu oranların anlamlı değerleri (k_x veya $k_y = 1/3$; 1/2; 1; 2; 3) seçilmiştir. Ancak, gerçekçi değerler kullanılması da hedeflendiği için, yalnızca, en büyük birincil gerilmenin (P_{max}), en küçük bileşene (P_{min}) oranının 3 veya daha küçük ($P_{max} / P_{min} \le 3$) olduğu durumlar araştırılmıştır. Bu durumda, birincil gerilme alanının asal bileşenleri açısından, 17 farklı durum söz konusudur (Çiz. 1).

Şekil 3. Birincil gerilmelerin asal bileşenleri

1.			k _y		
K _X	1/3	1/2	1	2	3
	$Pz = \gamma z$	$Pz = \gamma z$	$Pz = \gamma z$	D /	D > 2
1/3	$Px = \gamma z /3$	$Px = \gamma z /3$	$Px = \gamma z /3$	r _{max} /	$\Gamma_{\rm min} > 3$
	$Py = \gamma z /3$	$Py = \gamma z /2$	$Py = \gamma z$	oldu	ğu için
	$Pz = \gamma z$	$P_Z = \gamma Z$	$P_Z = \gamma_Z$	incele	nmeyen
1/2	$Px = \gamma z / 2$	$Px = \gamma z /2$	$Px = \gamma z / 2$	dur	ımlar
	$Py = \gamma z /3$	$Py = \gamma z /2$	$Py = \gamma z$	aur	ammar
	$P_Z = \gamma Z$	$P_Z = \gamma_Z$	$P_Z = \gamma_Z$	$P_Z = \gamma_Z$	$P_Z = \gamma Z$
1	$Px = \gamma z$	$Px = \gamma z$	$Px = \gamma z$	$Px = \gamma z$	$Px = \gamma z$
	$Py = \gamma z /3$	$Py = \gamma z /2$	$Py = \gamma z$	Py=2γz	$Py = 3\gamma z$
	D (1		$Pz = \gamma z$	$Pz = \gamma z$	$Pz = \gamma z$
2	P_{max} / I	$P_{\rm min} > 3$	$Px = 2\gamma z$	Px =2γz	$Px = 2\gamma z$
	olduğ	u için	$Py = \gamma z$	Py=2γz	$Py = 3\gamma z$
	inceler	nmeyen	$Pz = \gamma z$	$Pz = \gamma z$	$Pz = \gamma z$
3	dura	ımlar	$Px = 3\gamma z$	$Px = 3\gamma z$	$Px = 3\gamma z$
	uurt	innui	$Py = \gamma z$	Py=2γz	$Py = 3\gamma z$

Cizelge 1. İncelenen birincil gerilme durumları

4.2 Kaya Kütlesinin Özellikleri

4.2.1 Birim Hacim Ağırlığı

Düşey birincil gerilmelerin hesaplanmasında kullanılan kaya kütlesinin birim hacim ağırlığı $\gamma = 0.027 \text{ MN/m}^3$ olarak seçilmiştir.

4.2.2 Kaya Kütlesinin Niteliği

Çok zayıf nitelikli kaya kütlesinin zemin gibi davranacağı; orta, iyi ve çok iyi nitelikli kaya kütlelerinin de çok fazla sorun çıkartmayacağı düşünülerek, çalışmada yalnızca "zayıf" nitelikte kaya kütlesi göz önünde bulundurulmuştur. Bieniawski'nin (1989) Jeomekanik Sınıflama Sistemi'ne göre kaya kütlesi puanı (RMR: rock mass *rating*) cinsinden "zayıf" nitelikte kaya kütlelerinde RMR = 21 - 40 arasında olup, cözümlemelerde RMR = 30 alınmıştır. Bu değer, kava kütlesinin dayanım ve özelliklerinin deformasyon kestiriminde kullanılmıştır.

4.2.3 Kaya Kütlesinin Dayanımı

Çözümlemelerde, Hoek-Brown (H-B) görgül yenilme ölçütü kullanılmıştır. H-B ölçütünün en son şekli aşağıda sunulmuştur (Hoek vd. 2002):

$$\underline{\sigma}_{.1}^{\prime} = \sigma_{3}^{\prime} + \sigma_{ci} \left(m_{b} \frac{\sigma_{3}^{\prime}}{\sigma_{ci}} + s \right)^{a}$$
(1)

Burada; σ_1 ' ve σ_3 ', yenilme anında uygulanan en büyük ve en küçük asal etkin gerilmeler;

 σ_{ci} , sağlam kaya malzemesinin tek eksenli basınç dayanımı; m_b, s ve *a* da H-B dayanım değiştirgeleridir (Hoek vd. 2002). Kaya kütlesinin m_b değiştirgesi için;

$$m_b = m_i \exp\left(\frac{GSI - 100}{28 - 14DF}\right) \tag{2}$$

bağıntısı önerilmiştir (Hoek vd. 2002). Burada m_i, sağlam kaya malzemesi örnekleri üzerinde yapılan dayanım deneylerinin istatistiksel olarak değerlendirilmesiyle elde edilen dayanım değiştirgesidir. Sağlam kayaç için, m_i tanecikler arası sürtünmeye ve kilitlenme derecesine bağlıdır (Hoek ve Brown 1980). GSI (*Geological Strength Index*) kaya kütlesine ait "jeolojik dayanım indeksi" ve DF (*Disturbance Factor*) ise "örselenme çarpanı"dır.

H-B ölçütündeki, m_i değerinin kestirimi için kaya malzemesinin tek eksenli basınç dayanımı ve tek eksenli çekme dayanımı (σ_{ti}) değerleri de kullanılabilmektedir:

$$m_i = \frac{\sigma_{ti}}{\sigma_{ci}} - \frac{\sigma_{ci}}{\sigma_{ti}}$$
(3.a)

Ancak, doğrudan çekme dayanımı deneyi nadir olarak yapılmaktadır; onun yerine dolaylı (Brezilya) çekme dayanımı (σ_{tB}) deneyi tercih edilmektedir. Bu durumda;

$$m_i = \frac{16\sigma_{\iota B}}{\sigma_{ci}} - \frac{\sigma_{ci}}{\sigma_{\iota B}}$$
(3.b)

bağıntısı kullanılmaktadır. Çözümlemelerde, birçok kayaç türüne uygulanabilecek şekilde $m_i = 10$ (veya | $\sigma_{ci} / \sigma_{ti}$ | = 10.1) değeri kullanılmıştır. H-B ölçütünün en son şekline göre (Hoek vd. 2002), kaya kütlesinin tek eksenli basınç dayanımı (σ_{cm}),

$$\sigma_{cm} = \sigma_{ci} \cdot s^a \tag{4}$$

bağıntısıyla verilmektedir. Burada; σ_{ci} , s ve *a* büyüklüklerinin bilinmesi gerekmektedir. Hoek vd. (2002), s ve *a* için

$$s = \exp\left(\frac{GSI - 100}{9 - 3DF}\right) \tag{5}$$

$$a = \frac{1}{2} + \frac{1}{6} \left(e^{-GSI/15} - e^{-20/3} \right)$$
 (6)

bağıntılarını önermişlerdir.

Sığ tünellerde, ortamı rahatsız etmeyecek derecede özenli kazı yapılacağı düşünülerek, DF için 0 değeri alınabilir. Ayrıca, bu çalışmada, Bieniawski'nin (2011) görüşleri doğrultusunda, GSI = RMR varsayımı yapılmıştır.

Kaya kütlelerinde, doruk (*peak*) ve kalıcı (*residual*) koşulların sağlandığı durumlardaki dayanım değiştirgeleri üzerinde çalışan Ribacchi'nin (2000) yaptığı önerilere göre; çalışmada kırılmış kaya kütlesine ait m_r ve s_r değerleri için şu bağıntılar kullanılmıştır:

$$m_r = 0.65 m_b \text{ ve sr} = 0.04 \text{ s}$$
 (7)

4.2.4 Kaya Kütlesinin Deformasyon Özellikleri

Kaya kütlesinin deformasyon modülünün kestirimi için çok sayıda görgül bağıntı önerilmiştir. Bunlardan, doğrudan kaya kütlesinin deformasyon modülünü (E_m) kestirenler ve elde edilen değerler Çizelge 2'de verilmiştir.

Sığ tünel probleminde tünel yüzeyindeki gerilmeleri veren analitik bağıntılara göre (Gerçek 1990); teğetsel gerilmeler ortamın Poisson oranından (v) etkilenmektedir. Ancak, söz konusu etki, genellikle tünelin yeryüzüne en yakın tavan bölgesinde önemli olmaktadır. Özellikle tünelin tavanındaki (merkez açısı yaklaşık 60° olan) dar bir yayda belirgin olan bu etki, oldukça sığ tünel (H/D < 1) durumlarında geçerli olmaktadır (Gerçek 1990). Ayrıca, tünel yüzeyinin diğer kısımlarında, Poisson oranının 0 ile 0.5 değerleri arasında, gerilmelerin çok fazla farklılaşmadığı anlaşılmaktadır.

Çizelge 2. Görgül bağıntılar kullanılarak elde edilen ve çözümlemelerde kullanılan E_m değerleri

Öneren	Önerilen Bağıntı	RMR = 30 için Em (GPa)
Serafim ve Pereira (1983)	$10^{[(RMR - 10)/40]}$ *	3.16
Read vd. (1999)	$0.1 (0.1 RMR)^3$	2.7
Çözümlemelerde kullanılan değer:		3.0

(*) RMR < 60 için kullanılması önerilmiştir (Bieniawski, 2011)

Bu nedenle, incelenen sığ tünel problemlerinde kaya kütlesinin Poisson oranı olarak, ortalama bir değer olan, v =0.25 seçilmiştir.

4.2.5 Çözümlemelerde Kullanılan Değerler

Cözümlemelerde, RMR \approx GSI = 30 olan kaya kütlesi için kullanılan mekanik özellikler su sekildedir:

 Sağlam kaya malzemesinin tek eksenli basınç dayanımı: $\sigma_{ci} = 30$ MPa

• Kaya kütlesinin deformasyon modülü: E_m = 3 GPa

• Kaya kütlesinin Poisson oranı: v = 0.25

• Kaya malzemesinin H-B dayanım değiştirgesi: $m_i = 10$

• Kaya kütlesinin H-B dayanım değiştirgeleri: $m_b = 0.821$, s = 0.0004 ve a = 0.522

• Yenilmiş kaya kütlesinin H-B dayanım değiştirgeleri: $m_r = 0.53$ ve $s_r = 1.6 \cdot 10^{-5}$

• Kaya kütlesinin tek eksenli çekme dayanımı: $(\sigma_{tm})_{H-B} = -0.015 \text{ MPa}$ • Kaya kütlesinin tek eksenli

basinc dayanımı: $(\sigma_{cm})_{H-B} = 0.516 \text{ MPa}$

4.3 Sonlu Elemanlar Modeli

Bu çalışma kapsamında kullanılan PHASE² (ver. 8.0) yazılımı, iki boyutlu sonlu elemanlar gerilme çözümlemesi yöntemi uygulayarak, jeolojik ortamlarda ve yeraltında ya da yeryüzünde yapılan kazılar için kullanılan güçlü bir yazılımdır (Rocscience 2011).

tünel probleminde, problem Sığ geometrisi ve birincil gerilme koşulları, tünelin düşey eksenine göre simetri göstermektedir (Şek. 4). Bu sayede, sayısal çözümlemeler, gerçek problem alanının simetrik iki yarısından birinin (Şek. 4'te zekseninin sağ tarafının) göz önünde bulundurulmasıyla yapılmıştır. Bu durum, modellerdeki yer değiştirme serbestliği derecesinin yaklaşık olarak % 50 azalması. dolayısıyla da çözüm süresinin kısalması kolaylıklar sağlamıştır. gibi Modelin simetrisi nedeniyle, simetri ekseni olan tünelin düşey (z) ekseni üzerinde yer alan (model tabanındaki nokta hariç) düğüm noktalarının tümünün yatay yöndeki hareketi kısıtlanmış ve bunların düşey yönde hareketi serbest bırakılmıştır.

Şekil 4. Problemin z-eksenine göre simetrisi

Ayrıca, tünel merkezinden 10 çap uzaklıkta ver alan, modelin tabanındaki ve diğer düşey sınırındaki noktalara, buralarda tünelin etkisinin pratik olarak ortadan kalktığı varsayımıyla, yatay ve düşey doğrultularda hareketlerin kısıtlandığı sınır koşulları uygulanmıştır.

4.4 Duraysızlıkların Değerlendirilmesi

Bilindiği gibi; sonlu elemanlar gerilme çözümlemeleri, problemin çözümünü çok değişik büyüklüklerin (örneğin; gerilmelerin, gerinimlerin veya yer değiştirmelerin) dağılımları şeklinde vermektedir. Her ne kadar bu büyüklüklerden bazılarının açıklık çevresindeki dağılımı, olası duraysızlıkları değerlendirmede yardımcı olabilirse de, çok daha anlamlı ve daha pratik duraysızlık göstergelerinin kullanılması gerekmektedir.

Aslında, elasto-plastik cözümlemelerde bu değerlendirme; venilme bölgesinin belirlenmesi ve farklı değiştirgelerin bu bölgenin şekline ve boyutlarına etkisinin incelenmesiyle oldukça doğrudan yapılabilir. Ancak, sığ tünel probleminde. elasto-plastik cözümlemeler savısal duraysızlık (numerical instability) sorunları varatmıştır.

Bu nedenle, bu çalışmada yalnızca elastik çözümlemeler göz önünde bulundurularak, faklı değiştirgelerin yol açacağı olası duraysızlıklar incelenmiştir.

Yönlere bağlı 3-boyutlu bir gerilme alanı içerisinde açılan bir yeraltı açıklığı cevresindeki ikincil gerilmeler 3-boyutlu bir dağılım göstermektedir. Bu nedenle, bir yeraltı açıklığı çevresinde oluşan gerilme değişimlerinin sebep olabileceği yenilme potansiyelinin değerlendirilmesinde anlamlı ve pratik göstergeler kullanmak gerekir. Üç boyutlu gerilme dağılımı gösteren bu çeşit bölgelerde; herhangi bir noktadaki etkiyen gerilmelerin asal gerilmeler uzayında tanımladığı bir P (σ_1 , σ_2 , σ_3) noktasının, kullanılan yenilme ölçütünün tanımladığı üç boyutlu yenilme yüzeyine olan uzaklığı önem kazanmaktadır. Bu gerilme noktasının hidrostatik gerilme eksenine (ON'ye) olan uzaklığı (PN), saptırıcı gerilme gereyinin ikinci değişmezi (second invarian of the deviatoric stress tensor) (J₂) kullanılarak bulunabilir (Şek. 5). PN, "etkiyen gerilmelerin" tanımladığı bir büyüklük olup,

$$PN = [2 (J_2)_{etkiyen}]^{1/2}$$
(8)

bağıntısıyla hesaplanabilir. Burada; $J_2 = [(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2]/6$

bağıntısıyla verilmektedir.

Bu noktayı, bulunduğu oktahedral düzlemde hidrostatik gerilme eksenine birleştiren doğrunun konumunu belirlemede kullanılan bir gösterge olan Lode açısı da aşağıda verilmektedir (Şek. 6):

(9)

$$\theta_{\rm L} = \{ \arcsin \left[-1.5 \ J_3 \left(3 \ / \ J_2^3 \right)^{1/2} \right] \} / 3 \tag{10}$$

Burada, - $\pi/6 \le \theta_L \le \pi/6$ sınırlaması vardır. Ayrıca, I₁, gerilme gereyinin birinci değişmezi; J₂ ve J₃, saptırıcı gerilme gereyinin, sırasıyla, ikinci ve üçüncü değişmezleridir. I₁ ve J₃ ise,

$$I_1 = \sigma_1 + \sigma_2 + \sigma_3 \tag{11.a}$$

$$J_3 = (\sigma_1 - I_1/3) (\sigma_2 - I_1/3) (\sigma_3 - I_1/3)$$
(11.b)

bağıntıları ile hesaplanmaktadır.

Aynı oktahedral düzlemde, aynı Lode açısına sahip bir doğrunun, yenilme yüzeyini kestiği noktanın hidrostatik gerilme eksenine olan uzaklığı da P (σ_1 , σ_2 , σ_3) noktasındaki "dayanım" olarak tanımlanır. Dayanım,

$$PN_{max} = (2 [J_2]_{dayanim})^{1/2}$$
(12)

bağıntısından bulunabilir.

Bir noktadaki "dayanım katsayısı" (SF: strength factor); aynı oktahedral düzlem içinde, etkiyen gerilme noktasından geçen doğrultunun yenilme yüzeyini kestiği noktanın hidrostatik gerilme eksenine olan uzaklığının (PN_{max}), gerilme noktasının

Şekil 5. Bir P (σ_1 , σ_2 , σ_3) noktasının asal gerilmeler uzayındaki yeri ve oktahedral düzlem

Şekil 6. Oktahedral düzlem üzerindeki tanımlamalar

hidrostatik gerilme eksenine olan uzaklığına (PN) oranıdır:

$$SF = [(J_2)_{dayanim} / (J_2)_{etkiyen}]^{1/2}$$
(13)

PHASE² yazılımında; dayanım katsayıları açıklığı çevreleyen ortamdaki noktalarda Hoek-Brown görgül yenilme ölçütüne göre hesaplandıktan sonra, yazılımın grafik özellikleri kullanılarak eş-dayanım katsayısı eğrileri çizdirilmekte ve açıklık çevresinde SF dağılımları elde edilmektedir.

Açıklık çevresinde, dayanım katsayısı 1'e eşit olan noktalardan geçen eğri, açıklık

1266
çevresindeki (SF ≤ 1 olan) aşırı gerilme bölgesini sınırlamaktadır. Farklı durumlarda, açıklıkların çevresindeki yenilme potansiyeli yüksek bölgelerin karşılaştırılabilmesi için basit fakat anlamlı bir niceliksel ölçüt kullanılmaktadır. "Aşırı gerilme bölgesi indisi" (IOZ: *index of overstressed zone*) olarak adlandırılan bu büyüklük, basitçe, açıklık çevresindeki aşırı gerilme bölgesi alanının açıklığın kesit alanına oranı olarak tanımlanmıştır.

Yeraltı açıklıkları çevresinde, birbirinden farklı birincil gerilme durumlarında oluşabilecek duraysızlıkların değişimi, bir bakıma, IOZ değerlerindeki değişimle kendini göstermektedir (Gerçek ve Geniş 1995).

4.5 Çözümleme Sonuçları

4.5.1 $Pz = Px = Py = \gamma z$ Durumları

Gerçek hidrostatik birincil gerilme alanını temsil eden bu durumlarda elde edilen sonuçlar Şekil 7'de sunulmuştur.

Buna göre; tünelin derinliği arttıkça IOZ değerleri de artmakta, dolaysıyla, duraylılık da azalmaktadır. Gözlemlenen aşırı gerilme bölgesi, Wong ve Kaiser (1991) tarafından II. tür (sürekli) olarak tanımlanan şekilde olup, zeminlerdekine kıyasla yatay çapa göre asimetri daha az belirgindir.

4.5.2 $Pz = \gamma z \neq Px = Py$ Durumları

Birincil gerilme alanının yatay bileşenlerinin birbirine eşit olduğu durumlar şunlardır:

• Pz = γz > Px = Py durumları: Yatay ve eksenel birincil gerilmelerin düşey birincil gerilmeye oranının 1'den küçük ($k_x = k_y = 1/3$ ve 1/2) olduğu durumlarda elde edilen sonuçlar Sekil 8'de sunulmuştur.

• $Pz = \gamma z < Px = Py$; durumları: Yatay ve eksenel birincil gerilmelerin düşey birincil gerilmeye oranının 1'den büyük ($k_x = k_y = 2$ ve 3) olduğu durumlarda elde edilen sonuçlar Şekil 9'da sunulmuştur.

Yatay birincil gerilmelerin eşit olduğu durumlarda elde edilen sonuçlar, Şekil 7'deki hidrostatik birincil gerilme durumu da göz önünde bulundurarak, değerlendirilirse; yatay birincil gerilmelerin eşit olduğu tüm durumlarda:

Şekil 7. Hidrostatik birincil gerilme alanında SF değerlerinin dağılımı ve IOZ değerleri

• k değerinin 1/3'ten 1/2'ye artması, sığ tünellerde duraylılığı biraz olumlu olarak etkilemekteyse de;

• k'nın 1'den (özellikle de 2'den) büyük değerler alarak artması, duraylılığı olumsuz yönde etkilemektedir.

Ayrıca, aynen hidrostatik birincil gerilme durumunda olduğu gibi; incelenen tüm gerilme koşullarında, birincil tünelin derinliği arttıkça duraylılık da azalmaktadır. Bunda, derinlere inildikce artan birincil gerilme koşullarında, daha tünel açılmadan bile arazideki güvenlik katsayılarının derinlere doğru gidildikçe azalmasının büyük rolü vardır. Bu nedenle, bundan sonraki incelemeler, bağıl derinliğin nispeten küçük (H / D = 3 ve 6) olduğu durumlarla sınırlandırılacaktır. Sekillere göre; k = 1/3 ve 1/2 durumlarında gözlenen aşırı gerilme bölgesi, Wong ve Kaiser (1991) tarafından I. tür (yerel) olarak tanımlanan şekildedir. Öte vandan, k = 2 ve 3 durumlarındakiler ise daha cok II. türden (sürekli) ve vatav capa göre az cok simetrik olmaktadırlar.

4.5.3 $Pz = Px = \gamma z \neq Py$ veya $Pz = Py = \gamma z \neq Px$ Durumları

Düşey Birincil gerilmenin yatay veya eksenel birincil gerilmelerden birine eşit ve H/D = 3 olduğu durumlarda elde edilen

Şekil 8. k_x = k_y < 1 durumlarında sığ tünel çevresindeki SF dağılımları ve IOZ değerleri

sonuçlara (Şek.11 ile 12) ve bulunan IOZ değerlerine göre, aşağıdaki değerlendirmeler yapılabilir:

• k_x veya $k_y < 1$ olduğu durumlarda; tünel herhangi bir yatay doğrultuda sürülebilir. Kesin bir yargıda bulunabilmek için, birincil gerilme koşullarına göre detaylı duraylık çözümlemeleri yapılması gerekir. Şekil 9. k_x = k_y > 1 durumlarında sığ tünel çevresindeki SF dağılımları ve IOZ değerleri

• k_x veya $k_y \ge 2$ olduğu durumlarda ise; tünelin yatay konumlu birincil gerilmelerden büyük olanına paralel olarak sürülmesinin duraylılık açısında kesinlikle daha uygun olacağı söylenebilir.

• Ayrıca, tünel çevresindeki aşırı gerilme bölgesi şekillerinin, yatay tünel çapına göre simetrikliği dikkati çekmektedir.

1268

23rd International Mining Congress & Exhibition of Turkey • 16-19 April 2013 ANTALYA

Şekil 11. Düşey birincil gerilmenin yatay veya eksenel birincil gerilmelerden birine eşit ve k < 1 olduğu durumlar (H/D = 3)

4.5.4 $Pz \neq Px \neq Py$ Durumları

Birincil gerilmelerin tüm asal bileşenlerinin birbirinden farklı olduğu durumlar, H/D = 6 bağıl derinlik için, iki alt başlıkta incelenmiştir: Pz = $\gamma z > Px \neq Py$ (Şek. 13'te üstte) ve Pz = $\gamma z < Px \neq Py$ (Şek. 13'te altta) durumları. Buna göre:

• Düşey birincil gerilmenin en büyük olduğu koşullarda, tünelin yatay birincil gerilmelerden küçük olana paralel sürülmesi duraylılık açısından daha olumludur.

• Düşey birincil gerilmenin en küçük olduğu koşullarda ise, tünelin yatay birincil gerilmelerden büyük olana paralel sürülmesi duraylılık açısından daha olumludur.

• Tünel çevresinde oluşan aşırı gerilme bölgesi şekilleri, I. ve II. türden olup, bunların yatay tünel çapına göre simetrikliği daha da belirgindir.

Şekil 12. Düşey birincil gerilmenin yatay veya eksenel birincil gerilmelerden birine eşit ve k > 1 olduğu durumlar (H/D = 3)

5 SONUÇLAR

Zayıf kaya kütlelerinde açılan sığ dairesel tünellerde duraylılığın bir dizi değiştirgesel gerilme çözümlemesiyle incelendiği bu çalışmadan elde edilen önemli sonuçlar aşağıda özetlenmiştir:

• Tüm birincil gerilme koşullarında, H/D oranı arttıkça duraylılık da azalmaktadır.

• Yatay birincil gerilmelerin eşit olduğu durumlarda; k değerinin 1/3'ten 1/2'ye artması duraylılığı biraz olumlu olarak etkilemekteyse de, k'nın özellikle 2'den büyük değerler alması duraylılığı olumsuz yönde etkilemektedir.

• Yatay birincil gerilmelerden birisinin düşey birincil gerilmeye eşit ve gerilmelerin tamamen yönser olduğu durumlarda duraysızlık potansiyeli eksenel birincil gerilmeye göre değişiklik göstermektedir.

Şekil 13. Tamamen yönser birincil gerilme koşullarında, sığ tünel (H/D = 6) çevresindeki SF dağılımları ve IOZ değerleri

• Tünel doğrultusunun mühendisin seçenekleri arasında yer alması durumunda, duraylılık açısından en olumlu geçkiyi belirlemek mümkün olabilir.

• Zayıf kaya kütlelerinde açılan sığ tünellerdeki aşırı gerilme bölgesi şekilleri; kohezyonsuz zeminler için önerilen I. ve II. türden yenilmelere benzemekte, yatay tünel çapına göre simetri göstermekte ve III. tür oluşmamaktadır.

KATKI BİLDİRME

Bildiriye temel olan 2011-17-11-01 No.'lu Lisansüstü Öğrenim ve Araştırma Projesi, Bülent Ecevit Üniversitesi, Bilimsel Araştırma Projeleri Birimi tarafından desteklenmiştir.

KAYNAKLAR

- Bieniawski, Z. T. 1989. Engineering Rock Mass Classifications. John Wiley and Sons. New York, 237 pp.
- Bieniawski, Z. T. 2011. Misconceptions in the applications of rock mass clasifications and their corrections. ADIF Seminar on Advanced Geotechnical Characterization for Tunnel Design, 32 pp.
- Ewoldsen, H.M. 1968. The near surface tunnel in gravitating medium: state of stress. *Proc. 10th US Symp. on Rock Mechanics*, pp. 677-698, Austin.
- Gerçek, H. 1990. Sığ tüneller çevresindeki gerilmeler. 2. Ulusal Kaya Mekaniği Semp. Bildiriler Kitabı, s. 1-16, Ankara.
- Gerçek, H. ve Geniş, M. 1995. Dairesel olmayan yeraltı açıklıklarında duraylığın karşılaştırmalı bir incelemesi. *Türkiye 14. Madencilik Kongresi Bildiriler Kitabı*, s. 43-48, Ankara.
- Gerçek, H. and Geniş, M. 1999. Effect of anisotropic in situ stress field on the stability of underground openings, *Proc. of the 9th International Congress* on Rock Mechanics, pp. 367–370, Johannesburg.
- Hoek, E. 2004. Numerical modelling for shallow tunnels in weak rock (Unpublished Notes), www.rocscience.com/library/rocnews/Spring2003 /ShallowTunnels.pdf, (Erişim tarihi: 20.12.2012).
- Hoek, E. and Brown E.T. 1980. Underground Excavations in Rock, IMM, London, 527 pp.
- Hoek, E., Carranza-Torres, C. and Corkum, B. 2002. Hoek – Brown failure criterion - 2002 edition. *Proc. NARMS-TAC Conf.*, pp.267-273, Toronto.
- ITA 2007. Settlements induced by tunneling in soft ground. *Tunnelling and Underground Space Technology*, Vol. 22, pp. 119-149.
- Peck, R.B., Hendron, A.J. and Mohraz, B. 1972. State of the art soft-ground tunneling. Proc. 1st Rapid Excavation and Tunnelling Conference, Vol. 1, pp. 260-286, Chicago, Illinois.
- Ribacci, R. 2000. Mechanical tests on pervasively jointed rock material: insight into rock mass behaviour. *Rock Mechanics and Rock Engineering*, Vol. 33, No. 4, pp.: 243-266. Rocscience 2011. PHASE², Version 8.0,
- Rocscience 2011. PHASE², Version 8.0, http://www.rocscience.com/products/phase2.asp, (Erisim tarihi: 20.12.2012).
- Sakız, U. 2012. Sığ Tünellerde Duraylılığı Etkileyen Faktörlerin ve Yenilme Mekanizmalarının İncelenmesi. Y. Lisans Tezi, Bülent Ecevit Üniv., Maden Müh. Böl., Zonguldak, 177 s.
- Töyrä, J. 2006. Behaviour and Stability of Shallow Underground Constructions. Licentiate Thesis in Civil and Environmental Engineering, Lulea University of Technology, Sweden, 135 pp.
- Wong, R.C.K. and Kaiser, P.K. 1991. Performance assessment of tunnels in cohesionless soils. *Journal of Geotechnical Engineering*, Vol. 117, No.12, pp. 1880-1991.

Sığ Şehir Tünellerinde Ayna Çivisi Kullanımının Tünel Duraylılığına Etkisi: Bornova Metro Örneği *The Effects Of Using Face Bolt At Shallow Urban Tunnels On*

The Tunnel Stability: Bornova Metro Case

K. Küçük, T. Onargan, C. O. Aksoy

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Maden Mühendisliği Bölümü, İzmir

M. Geniş

Bülent Ecevit Üniversitesi, Mühendislik Fakültesi, Maden Mühendisliği Bölümü, Zonguldak

ÖZET Tünel açımı esnasında oluşan zemin oturmalarının önemli bir bölümü tünel açma işleminde tahkimat kuruluncaya kadar oluşan ön konverjanslar ve tünel aynasının tünel içine doğru olan hareketinden kaynaklanmaktadır. Tünel aynasının duraylılığını arttırmak dolayısıyla zemin oturma miktarını düşürmek mümkündür. Bu amaçla ayna içine doğru fiber kolonlar, jet grout kolonları, ayna çivisi vd. uygulamaları yapılmaktadır. Bu çalışmada, tünel açımında ön tahkimat aşamasında diğer tahkimat sistemleri ile birlikte ayna çivisi kullanımının tünel duraylılığına etkisi araştırılmış ve uygulamadan örneklerle birlikte değerlendirilmiştir. Sonuçlar, ayna çivisinin zemin oturmasını engelleyen yönde etkilerini açıkça ortaya koymuştur.

Anahtar Kelimeler: Sığ Tünel, Ayna Çivisi, Duraylılık

ABSTRACT Settlements during the driving of the tunnel is an important part of excavated tunneling process until the establishment of support and tunnels pre convergences due to the movement of the face into the tunnel. Therefore possible to reduce the amount of ground face to increase the stability of the tunnel. To this end, the face into the fiber columns, jet grout columns, face bolt, etc., can be performed. In this study, the tunnel excavation stage of permanent support with other support systems studied the effect of the face and applying face bolting case studies were evaluated with the use of the stability of the tunnel. The results clearly demonstrated that the effect of the face bolts in the direction that prevents on the ground settlements.

Keywords: Shallow Tunnel, Face Bolt, Stability

1 GİRİŞ

İzmir Metrosu Hafif Raylı Sistem kapsamı içerisinde mevcut hattın Ege Üniversitesi Hastanesi'nden Bornova Merkez bağlantısını sağlamak amacıyla planlanan tünel hattını konu alan bu çalışmada (Şekil 1 ve 2), tünel açımında ön tahkimat aşamasında diğer tahkimat sistemleri ile birlikte ayna çivisi kullanımının tünel duraylılığına etkisi araştırılarak, uygulamadan örneklerle değerlendirme yapılmıştır. Killi ve zayıf formasyonlarda ve sığ tünellerde ani çökmeler dahil olmak üzere meydan gelen yüzey oturmalarının yarısına yakını tünel daha yüzeydeki ölçüm istasyonuna gelmeden önce oluşmaktadır. Gelen yükler nedeniyle aynada plastikleşen ve dayanımını yitiren malzeme hacmi kadar yüzeyde oturmalar olacaktır. Bunların önlenmesi için tünel aynasındaki zeminin içsel parametrelerini olumlu yönde artırmak gereklidir.

Boru kemer yönteminde bu amaca yönelik kullanılan zemin çivileri kazı öncesi yüzey oturmalarını denetleyen destek elemanlarıdır. Bazı uygulamalarda zemin çivisi yerine fiberglas boru ve jet-grout kolon uygulamaları da yapılabilmektedir.

Şekil 1. İncelenen güzergâha ait yer bulduru uydu görüntüsü

Şekil 2. Tünel güzergâhı ve üzerinde yer alan yerleşim alanları

2 GENEL JEOLOJİK YAPI

İzmir ve yöresinde temeli, Üst Kretase yaşlı Bornova Melanjı oluşturmaktadır (Özbek, 1981). Melanjın matriksinden daha yaşlı kireçtaşı mega-olistolitleri Bornova Melanjı'nın matriksi içinde gelişigüzel bir düzen içinde bulunurlar. Bahsedilen kireçtaşları, Altındağ ve yöresinde Işıklar kireçtaşı olarak bilinmektedir.(Özer ve İrtem, 1982). Bornova Melanjı (karmaşığı), kumtaşı/şeyl-kalkerli şeyl ardalanmasından oluşmuş matriks içerisinde yüzen platform türü kireçtaşı ve diyabaz bloklarından ve çakıltaşı mercek/kanal dolgularından meydana gelmiştir (Erdoğan, 1990). Neojen yaşlı gölsel tortullar Bornova Melanjı'nın üzerine açısal uyumsuz olarak gelmektedir. Yamanlar volkanitleri de mevcut birimleri uyumsuz olarak örter. Kuvaterner yaşlı alüvyon ise incelenen alanda mevcut tüm birimleri uyumsuz olarak üstlemektedir (Şekil 3). İncelenen güzergâhın tamamı gölsel tortullar içerisinde açılacaktır.

Şekil 3. İnceleme alanı ve çevresine ait genel jeoloji haritası (Kıncal, 2004)

3 TÜNEL GÜZERGÂHI BOYUNCA KARŞILAŞILMASI OLASI JEOLOJİK BİRİMLER VE MÜHENDİSLİK ÖZELLİKLERİ

Aşağıda yeryüzünden tünel ray kotunun altına kadar güzergâh boyunca karşılaşılacak olan birimler üstten alta doğru mühendislik özellikleri ile birlikte verilmektedir.

3.1 Dolgu Tabakası

Kazı alanında bazı lokasyonlarda en üstte 1,70-3,00 metre kalınlığında dolgu tabakası yer almaktadır. Dolgu tabakasının mühendislik parametreleri aşağıdaki şekilde kabul edilmiştir.

Birim Hacim Ağırlığı	$= 0,018 \text{ MN/m}^3$
Kohezyon	= 0,077 MPa
İçsel Sürtünme Açısı	$= 14^{\circ}$

3.2 Alüvyon (Qal)

Tünel güzergâhı boyunca karşılaşılan alüvyon çökeller genelde Killi Kumlu Çakıl, Qal (g) birimlerini oluşturmaktadır. Bu birim Terzaghi sınıflamasına göre dökülen (raveling) zemin olarak önceki çalışmalarda değerlendirilmiştir. Tünel güzergâhı boyunca tünel üstündeki egemen zemin birimlerini oluşturan Killi Kumlu Çakıl; bej-açık kahve renkli, çok sıkı, ince-iri taneli, nemli ve % 50 ye varan oranda iri çakıl ve blok içermektedir (Şekil 4). Bu birime ait zemin parametrelerinin ortalama değerleri ve değişim aralıkları Çizelge 1'de verilmektedir (Yüksel Proje, 1997).

Şekil 4. Kazı alanında gözlenen Killi Kumlu Çakıl birimi (Tünel portal önü istasyon kazısı)

Çizelge 1. Killi Kumlu Çakıl birimine ait zemin parametreleri ve değerleri (Yüksel Proje, 1997)

Zemin Parametreleri	Değer ve Aralık
Doğal Su İçeriği, W _n	$\% 9 (5 \le Wn \le 16)$
Plastik Limit (PL)	NP
4 no'lu elekte kalan	% 46 (23 ≤ ≠4 ≤ 79)
200 no'lu elekten geçen	% 17 (0 ≤ ≠200 ≤ 31)
Birleştirilmiş zemin	CP CM CP CM
sınıflaması	Ur, UM, Ur-UM
SPT (N)	$40 \le N \le R$
SPT: Standart Penetrasyon Test	i
NP: Plastik özellik göstermeyer	1
CD Varia 1 1	1.11.

GP : Kötü derecelenmiş temiz çakıllar ve

çakıl-kum karışımları

GM : Siltli çakıllar, çakıl- kum-silt karışımları

Tünel güzergâhının 13+335 km si ile 14+300 km si arasında gözlenen Çakıllı Kumlu Kil, Qal (c2) alüviyal istifin tabanına yakın kotlarda yer almaktadır. Bu birim bej-açık kahve renkli, sert, orta-yüksek plastisiteli yer yer karbonat konkresyonlu ve nemlidir. Söz konusu birimin mühendislik özellikleri Çizelge 2'de verilmektedir.

Çizelge 2. Çakıllı Kumlu Kil birimine ait zemin parametreleri ve değerleri (Yüksel Proje, 1997)

Zemin Parametreleri	Değer ve Aralık		
Doğal Su İçeriği, W _n	% 27 $(18 \le Wn \le 34)$		
Likit Limit (LL)	% 45 $(25 \le LL \le 70)$		
Plastik Limit (PL)	$\% 21 (18 \le PL \le 41)$		
4 no'lu elekte kalan	% 2 $(0 ≤ ≠4 ≤ 7)$		
200 no'lu elekten geçen	% 75 (59 ≤ $≠200 ≤ 91$)		
Birleştirilmiş zemin sınıflaması	CL, CH, ML-CL		
SPT (N)	$25 \leq N \leq R$		
SPT : Standart Penetrasyon	Festi :		

CL : Düşük plastisiteli inorganik killer ve siltli killer

CH : Yüksek plastisiteli inorganik killer ve siltli killer

ML : Düşük plastisiteli inorganik siltler ve killi siltler

3.3 Gölsel Tortullar

Tünel güzergahı boyunca gerek tünel aynasında gerekse üstünde egemen olarak

1274

karşılaşılan bu formasyon killi kireçtaşı, kiltaşı ve marn birimleri ile temsil edilmektedir. Bu formasyonun üst seviyelerinde yer yer ayrışma ürünü sert kile de rastlanmaktadır. Tünel kotunu oluşturan kayaçların ortalama RQD değerleri % 10-36 arasında değişirken, CSIR Jeomekanik sınıflamada "Zayıf -Çok zayıf" kaya sınıfına dahil edilmektedir. Öte yandan, ayrışma ürünü kil birimi ise Terzaghi sınıflamasına göre sağlam zemin sınıfına girmektedir (Yüksel Proje, 1997). Sondaj verilerine göre gölsel tortulları oluşturan birimler üstten alta doğru ayrışma ürünü çakıllı kumlu kil, killi kireçtaşı, kiltaşı-killi kireçtaşı ardalanması ve killi kireçtaşı şeklinde istiflenmiştir.

3.3.1 Tümüyle Ayrışmış Kaya (Maf/W5)

Formasyonun tümüyle ayrışmasından oluşan bu birim, bej-kahve renkli-kırmızı, çok katısert, orta yüksek plastisiteli, Mn0₂ boyalı yer yer karbonat seviyeleri içeren çakıllı kumlu kil ile temsil edilmektedir. Doğal halinde sert-sağlam özelliklere sahip bu birimde kazı sonrası atmosferik koşullar ve su etkisiyle yersel stabilite problemleri yaşanmaması için ek önlemler alınması gerekebilecektir. Bu birime ait zemin parametrelerinin ortalama değerleri Çizelge 3'de verilmektedir.

Çizelge 3. Tümüyle ayrışmış kaya birimine ait zemin parametreleri ve değerleri (Onargan vd., 2007)

(onuigun vu., 2007)	
Zemin Parametreleri	Değer
Doğal Su İçeriği, W _n	% 33
Likit Limit (LL)	% 66
Plastik Limit (PL)	% 27
4 no'lu elekte kalan	% 4
200 no'lu elekten geçen	% 85
Birleştirilmiş zemin sınıflaması	СН
SPT (N)	28
CDT(A)) CI I I D I T I	

SPT(N) : Standart Penetrasyon Testi CH : Yüksek plastisiteli inorganik killer ve siltli killer

3.3.2 Killi Kireçtaşı (Maf1)

Tünel inşasının bir bölümünde karşılaşılan killi kireçtaşı; bej renkli, orta-tümüyle ayrışmış, orta-sık eklemli, ondüleli-düzensiz, eklemler kil ve kalsit dolgulu, Aşırı ve Çok Zayıf Dayanımlı olup yer yer erime boşlukları ve killeşmiş seviyeler içermektedir. Ön Jeoteknik Rapor verilerine göre sondaj verilerinde bu birime ait RQD değerleri % 0-55 arasında değişmektedir. Genelde bu birimin ana litolojik yapısını korumasına karşılık ayrışma sonucu tümüyle bozunmuş olduğu görülmektedir.

3.3.3 Kiltaşı-Killi Kireçtaşı Ardalanması (Maf2)

Tünel güzergâhında önemli bölümünde karşılaşılacak olan bu ardalanma genel olarak kiltaşı ve killi kireçtaşı birimlerinden oluşmaktadır. Ancak yer yer jeo-mekanik özellikleri açısından killi kireçtaşına benzerlik gösteren marn birimine de rastlanmaktadır.

Kiltaşı birimi; kahve renkli çok-tamamen ayrışmış yer yer killeşmiş Aşırı ve Çok Zayıf Dayanımlıdır. Killi kireçtaşı birimi ise bej, az-tamamen ayrışmış, orta-sık eklemli, eklemler kil ve kalsit dolgulu ve Çok zayıf dayanımlıdır. Marn birimi; kahve renkliyeşilimsi kahve renkli, dağılgan, zayıf-çok zayıf, çok tamamen ayrışmış, sık-orta eklemli, eklemler kil dolguludur. Bu birimde genelde bozunmuş yapı arz etmektedir.

Atmosferik koşullar ve su etkisiyle bu birimlerin duraylılığı olumsuz bir şekilde etkilenebilir. Ancak yapılan ölçümler yer altı suyu seviyesinin kazı kotunun altında olduğunu göstermektedir (Onargan vd., 2007).

4 İNCELENEN TÜNELE AİT PROJE VERİLERİ VE HESAPLANAN PARAMETRELER

Sığ tünellerin stabilitesi ve davranışı sadece açılan tünelin parametrelerine bağlı olmayıp içinde açılan kaya/zeminin stabilitesine ve davranışına da bağlı olmaktadır.

Yeryüzünde meydana gelebilecek deformasyonlar ve tünelin yeryüzüne yakınlığı, binalar ve alt yapılar için büyük bir önem taşımaktadır. Bu çalışma kapsamında ele alınan Bornova Tüneli de sığ tünel niteliğinde (H < 2D) olup 9-20 metre derinlikten gecmektedir.

Yeraltı açıklığının açıldığı lokasyonlarda sübsidans parametrelerinin (tünel geometrik boyutları, dönüm noktası apsisi i_x , stabilite sayısı N, hacimsel zemin kaybı yüzdesi V_L, yüzeyde gözlenen maksimum çökme miktarı S_{max}) tümünün kestiriminin zorluğu nedeniyle bazı ampirik eşitlikler türetilmiştir. Bunlardan en yaygın olarak kullanılanı maksimum sübsidans(Smax) ile N stabilite sayısı arasındaki ilişkidir (Arıoğlu ve diğ., 1993).

 $S_{max}^{,\prime} = 4,9 \times N^{1,29}$ S_{max}: Maksimum sübsidans (mm) N: Stabilite Sayısı

Bu formülde kullanılan stabilite sayısı bir çok literatürde farklı ifadelerle tanımlansa da en yaygın olarak kullanılanı üst örtü basıncı, tahkimat basıncı ve drenajsız kesme dayanımına bağlı hesaplanan formüldür. Buna göre;

 $N = \sigma_Z / C_U$

 σZ = Tünel aksı üzerindeki üst örtü basıncı (MPa)) C_U = Kilin drenajsız kesme direnci (dayanımı) (MPa)

Bornova Metro Tüneli için yapılan değerlendirmeler sonucunda stabilite sayısının en az 5 alınması gerektiği ortaya çıkmıştır. N stabilite sayısı büyüklüğü ile beklenen tünel stabilite durumları da aşağıda Çizelge 4'de verilmiştir.

Çizelge 4. N stabilite sayısı ile tünel stabilite durumu arasındaki ilişki

Stabilite	Beklenen Stabilite Durumu ve		
Sayısı, N	Problemler		
$N \leq 3$	Tüm stabilite hakkında belirsizlik		
3 < N < 6	Düşük oranlı sübsidans ve tünel içinde sınırlı akma problemi		
N ≥ 5	Ayna önünde birçok göçme ve akma problemi, aşırı plastikleşme		
N≥6	Tümüyle stabil olmayan durum ve aynada çok ciddi stabilite problemleri		

Literatürde kayaç ve zeminlerin sıkışabilirliği ile ilgili birçok yaklaşım ve formüller yer almaktadır. Bornova tünel kazısında da kazı kotu ve üzerinde yer alan zeminlerin sıkışma kapasitelerinin belirlenmesi için laboratuar testleri dışında ampirik olarak da sıkışma özelliği değerlendirilmiştir (Cizelge 5). Bu konuda Jethwa ve arkadaşları tarafından 1984 yılında yayımladıkları zeminlerin sıkışabilirlik derecesini veren ampirik formül kullanılmıştır. Bu formül;

$$N_c = \frac{\sigma_{cm}}{P_o} = \frac{\sigma_{cm}}{\gamma \times H}$$
 şeklindedir.

Burada;

 σ_{cm} = Zeminin tek eksenli sıkışma dayanımı (MPa)

 P_0 = Yerinde üst örtü basıncı (MPa)

 γ = Zemin birim hacim ağırlığı (kN/m³)

H = Yeryüzünden olan tünel derinliği (m)

Çizelge 5. Zeminlerin sıkışabilme davranışının sınıflandırılması (Jethwa ve Singh, 1984)

σ_{cm}/P_{O}	Davranış Tipi
< 0.4	Yüksek sıkışabilirlik
0.4 - 0.8	Orta derecede sıkışabilirlik
0.8 - 2.0	Düşük sıkışma özelliği
> 2	Sıkışma özelliği olmayan

Yapılan laboratuar testleri sonucunda tünel kotu ve üzerinde yer alan zeminlerin tek eksenli sıkışma dayanımları 0,0914 MPa ile 1,35 MPa arasında değişmektedir. Ortalama değer ise 0,36 MPa'dır. Tünele gelen üst örtü basıncı ise 0,44 MPa olduğundan bu durumda sıkışma derecesi;

$$N_{c} = \frac{\sigma_{cm}}{P_{o}} = \frac{\sigma_{cm}}{\gamma \times H} = \frac{0.36}{0.44} = 0.8$$

İnceleme alanında kazı kotu ve üzerinde yer alan zemin kütleleri "Orta ve Yüksek Derecede Sıkışan Zemin" niteliğinde olduğu görülmektedir.

Metro tüneli kazılarında, kazı sonrası tünel duvarlarında oluşan konverjans ve yeryüzünde oluşan ve yüzeyde bulunan yapılara hasar veren, hatta yıkılmalarına neden olan tasmanın, müsaade edilebilir değerler arasında tutulabilmesi çok önemlidir.

Çökme çanağı genişliği parametresi (i) derinliğin bir fonksiyonu olup yapılan çalışmalarda elde edilen fonksiyonel bağıntı halinde aşağıda verilmektedir. $i = 0,43xZ_0 + 1,1$

Burada i, çökme çanağı genişliği parametresi olup bu mesafede çökmeye bağlı maksimum eğimler meydana gelmektedir ve derinliğe bağlı olarak değişmektedir. Zo ise tünel derinliğidir (Şekil 5). Çökme çanağı içerisinde herhangi bir noktada meydana gelen oturma miktarını veren formül aşağıda verilmektedir.

$$S_v(x) = S_{v,max} e^{-\frac{x^2}{2i_x^2}}$$

Burada;

 $S_V(x)$: Çökme çanağı içerisinde herhangi bir noktadaki çökme miktarı (mm)

 $S_{\nu,\text{max}}$: Maksimum çökme miktarı (mm)

ix: Çökme çanağı genişliği

$$V_{s} = \int_{-\infty}^{\infty} S_{v} dx = \sqrt{2\pi} . i_{x} . S_{v,ma}$$

Vs: Birim uzunluktaki çökme çanağı hacmi (m³)

Şekil 5. Tünel inşaası kaynaklı oturma geometrisi ve çökme çanağı genişlikleri

$$V_{L} = \frac{V_{S}}{\pi \frac{D^{2}}{4}}$$

V_L : D çaplı tünelde meydana gelen hacimsel kayıp (%)

$$V_1 = 0,343.N^{1,81} = 0,343x5^{1,81} = \%6,3$$

Çökme çanağının hacim kaybı cinsinden fonksiyonel ifadesi:

$$S_v(x) = \sqrt{\frac{\pi}{2}} \frac{V_L D^2}{4.i_v} e^{-\frac{X^2}{2i_x^2}}$$

Açısal çarpıklık değeri ve maksimum eğim olarak tanımlanan terim, çökme çanağı eğrisinde dönüm noktasındaki eğimin büyüklüğü olarak ifade edilmekte olup, bu değer yapılarda meydana gelen hasarların büyüklüğünde önemli bir parametre olarak kabul edilmektedir. Literatürde $(ds/dx)_{max}$ ifadesi ile anılan bu ifade yapı hasar değerlendirme analizlerinde yapısal hasarların "başlangıç hasar limit büyüklüğü" (ds/dx > 1/200) değeri kabul edilmektedir. Bu değerin tespitinde kullanılan ampirik ifade;

$$(ds/dx)_{max} = 0,606 \times S_{max}/i$$
, dir.

Bornova Metro Tüneli için hesap yapılacak olursa; $(ds/dx)_{max} = 1/14$ değeri bulunur.

Bu değerde 1/200 değerinden büyük olmaktadır. Bu durum metro tünelinin güzergahı üzerinde bulunan binalarda hasar olma ihtimalinin oldukça yüksek olduğu sonucunu ortaya koymaktadır.

Ampirik yaklaşımlarla belirlenmiş olan tünel inşası sırasında killi zeminler için belirlenmiş olan sübsidans parametreleri Çizelge 6'da verilmiştir.

Çizelge 6. Bornova Metrosu Tünel İnşaası Sırasında Mevcut Projenin Uygulanması Halinde Öngörülen Sübsidans Parametreleri

Parametre Türü	Değer	
Tünel Derinliği (ort) (H), m	20,00	
Tünel Eksen Derinliği (Z _o)	23,55	
Tünel Kazı Çapı (D)	9,70	
Çökme Çanağı Genişliği		
Parametresi, Kıvrılma Noktası (i), m	9,70	
Çökme çanağı genişliği (L= 6i), m	58,20	Sınır Değer
Stabilite Sayısı (N)	5	< 2
Maksimum Sübsidans Miktarı (S _{max}), mm	39 - 107	10
D çaplı tünelde meydana gelen hacimsel kayıp %	6,31	0,50
Açısal Çarpıklık Değeri,	0,07	0,002-,005
maksimum eğim (ds/dx)	(1/14)	(1/200-1/500)

Çizelge 6'dan görüleceği üzere önlem alınmaması halinde meydana gelebilecek çökme miktarları ve deformasyon göstergeleri sınır değerlerin oldukça üzerinde olacaktır. Bu nedenle klasik ön destekleme elemanlarına ek olarak bu tür killi formasyonlarda ayna çivisi, boru kemer vb. gibi ek önlemlerin yapılması zorunlu görülmektedir.

5. AYNA ÇİVİSİ ANALİZİ

Bu bölümde Bornova Metro Tünel yapımında aynada uygulanması öngörülen stabilitesi açısından ayna zemin güçlendirmesine gerek olup olmadığı Tunren V.1xprogrami yardımıyla araştırılmaya çalışılmıştır (Şekil 6).

Tunren programı, konverjans-sınırlama metodu ve ekstrüzyon olmak üzere 2 modülden oluşmaktadır. Konverjanssınırlama modülünde kısa-uzun vadeli tünel ve zemin stabilitesinde yanal destek parametrelerinin (kaya bulonu, ayna çivisi, segment vb.) iki boyutlu analizleri yapılmaktadır. Ekstrüzyon modülünde ise kısa vadeli olmak üzere, ayna stabilitesini sağlamaya yönelik ekstrüzyon deformasyonlarının hesabı, güvenlik faktörü yaklaşımı ve ayna destek elemanlarının üç boyutlu analizleri yapılmaktadır.

Bu program ile Mohr-Coulomb yenilme ölçütü esasına dayalı ampirik eşitliklerle oluşturulmuş olan yazılım yardımıyla ayna güçlendirmesi olmadığı durumda ve ayna güçlendirmesi olduğu durumda tünel-zemin davranışı çözümlemesi yapılarak ayna deformasyonu ve güvenlik faktörleri hakkında değerlendirme yapma olanağı vermektedir.

Kohezyon ve içsel sürtünme açısı gibi içsel parametrelerdeki indirgemelere göre güvenlik aralıklarının analizinde güvenlik sabiti 1,8 ila 2,1 olarak belirlenmiştir. Bu gibi zemin projelerinde güvenlik sabitinin en az 3 olması gerektiği düşüncesi ile aynanın mutlaka güçlendirilmesi gerektiği sonucuna varılmıştır.

Şekil 6. Tunren programında oluşturulan model

Analiz Kısa ve Uzun vadeli tünel ve zemin stabilitesinin belirlenmesine yönelik olarak gerçekleştirilmiştir. Ayna çivisi kullanılmadığı durumda yapılan analiz sonucunda kısa dönem (short term) de meydana gelecek ayna konverjansı 22,9 mm uzun dönemde (long term) de 23,6 mm olmak üzere tahkimat öncesi ve tahkimat

Şekil 7. Zemin – Tahkimat Konverjans Eğrileri

belirlenmiştir (Şekil 7 ve 8).

23rd International Mining Congress & Exhibition of Turkey • 16-19 April 2013 ANTALYA

Şekil 8. İçsel parametrelerin düşmesine bağlı deformasyon artışı grafiği

Yapılan tasarım çalışmaları sonucunda tünel güzergâhı boyunca karşılaşılacak litolojik birimlerde uygulanacak ön destekleme sistemleri P, C3, C4 ve C5 tahkimat klasları olarak belirlenmiş ve bunlara ait destekleme elemanları da aşağıda Çizelge 7'de verilmiştir.

Yapılan tasarımlarda klasik ön destek elemanlarına ek olarak çift sıra süren, boru kemer yöntemi ve ayna çivisi ile C5 klasında jet-grout kolonlar ilave destek sistemleri olarak öngörülmektedir (Çizelge 8).

Tünal Tini	Geometrik Boyutlar	Kazı Alanı	Uzunluk		
Tuner Tipi	(LxH), m	m^2	m		
Çift Hat, Tek Tüp	9,70 x 7,10	65	761,0		
Toplam			761,0		
Tünel Metre \rightarrow	Km: 13+335 - 13+617	Km: 13 + 617 - 13 + 992	Km: 13 + 992 - 14 + 096		
Örtü Kalınlığı (m)	9,8-20	16-18	13-18		
Formasyon Cinsi	Killi kumlu çakıl, (Qal/g), Çakıllı kumlu kil(Qal/c2), Tüm.ayrış.kaya (Maf/W5), Killi kireçtaşı (Maf1)	Killi Kireçtaşı (Mafl) Kiltaşı – Killi kireçtaşı ardalanması (Maf2)	Killi Kumlu Çakıl (Qal/g) Kiltaşı – Killi kireçtaşı ardalanması (Maf2)		
Kazı ve Destekleme Yöntemi	Yeni Avusturya Tünel Açma Yöntemi, Püskürtme Beton, Çelik Hasır, Çelik İksa, Kaya Bulonu, Süren Çubuk, Boru Kemer(Umbrella Arch) ve Ayna Çivisi, Jet- Grout				
Kazı Makinesi Tipi	Hidrolik çekiçli kırıcı (20- 30 ton)				
Nihai İç Kaplama	Çift Hat Tüneli: 50 cm Su Geçirimsiz donatılı beton(BS 30)				

Çizelge 7. Bornova Tüneli Proje Tasarım Karakteristikleri (Onargan vd., 2007)

KAYA KLASI	PRENSİP ŞEKLİ	DESTEK ELEMANLARI
P Portal Klası		 P. Beton= 30 cm (28 Günlük 21 MPa) Çelik Hasır= 2 Sıra (Q221/221) (Her ÇBK Periyodunda Q335/335) Boru Süren Kemer= 64 mm Üst kemer ve yan duvarlarda tabana kadar 2 sıra Bulonlar= Bindirme yerlerinde PG veya IBO Tipi Ayna Sağlamlaştırma=Karşılaşılacak Formasyona Bağlı Olarak Zemin Çivisi, Jet Grout Kolonları veya Fiber Kolonlar
СЗ		 P. Beton= 30 cm (28 Günlük 21 MPa) Çelik Hasır= 2 Sıra (Q221/221) Bindirme Yer. 2 Sıra (Q 335/335) Çelik Boru Kemer= 76 mm üst kemer ve yan duvarlarda tabana kadar. Bulonlar= Gereken yerlerde PG veya IBO Tipi (Bindirme yerleri) Ayna Sağlamlaştırma=Karşılaşılacak Formasyona Bağlı Olarak Zemin Çivisi, Jet Grout Kolonları veya Fiber Kolonlar
C4	c - FF (GETEX)EE MINIS ACTION	 P. Beton= 30 cm (28 Günlük 21 MPa) Çelik Hasır= 2-3 Sıra (Q221/221) (Her ÇBK Periyodunda Q335/335) Çelik Boru Kemer= 114 mm Üst kemer ve yan duvarlarda tabana kadar. Bulonlar= Gereken yerlerde PG veya IBO Tipi (Bindirme yerleri) Ayna Sağlamlaştırma=Karşılaşılacak Formasyona Bağlı Olarak Zemin Çivisi, Jet Grout Kolonları veya Fiber Kolonlar
C5	Actual of the second se	 P. Beton= 30 cm (28 Günlük 21 MPa) Çelik Hasır= 2-3 Sıra (Q221/221) (Her ÇBK Periyodunda Q335/335) Çelik Boru Kemer= 114 mm Üst kemer ve yan duvarlarda tabana kadar. Bulonlar= Gereken yerlerde PG veya IBO Tipi (Bindirme Yerleri) Ayna Sağlamlaştırma=Karşılaşılacak Formasyona Bağlı Olarak Zemin Çivisi, Jet Grout Kolonları veya Fiber Kolonlar Jet-Grout Kolonlar: Alt yarıda ve tünel tabanında 60-80 cm caplı kolonlar

Cizelge 8. P, C3, C4 ve C5 Klaslarında Uygulanacak Destekleme Elemanları

5. SONUÇLAR

Tasarımı yapılan Bornova Tüneli sığ tünel niteliğinde (H<2D) olup 9-20 metre derinlikten geçecektir. Planlanan Bornova Tünel güzergâhındaki jeolojik yapı içerisindeki kaya/zemin kütleleri anizotropik bir yapı sunmaktadır. Bornova tünel kazısında da kazı kotu ve üzerinde yer alan zeminlerin sıkışma kapasitesinin belirlenmesi için laboratuar testleri dışında ampirik olarak da sıkışma özelliği değerlendirilmiştir.

Konsolidasyon testlerinde ortalama % 6 sıkışma indisine sahip olan zeminin sıkışabilirliği incelendiğinde zemin "Orta ve Yüksek Derecede Sıkışan Zemin" sınıfında değerlendirilmiştir.

Yapılan analiz sonuçlarının değerlendirilmesi sonucunda Bornova Metro Tüneli'nde klasik ön destekleme elemanlarının yanı sıra ayna zemininde içsel parametreleri arttırıcı yönde güçlendirmenin yapılması gerektiği sonucuna varılmıştır.

Tünel kazısı nedeniyle yeryüzünde jeoteknik olusacak cökmeler zemin parametreleri ve tünel proje karakteristikleri alınarak ampirik dikkate ve teorik yaklaşımlarla belirlenmiştir. Buna göre Bornova Metro Tüneli inşaasında mevcut proje koşullarında zeminin stabilite sayısı 5 (sınır 2), sübsidans miktarı 39-107 mm(sınır 10 mm), hacimsel kayıp % 6,3 (sınır 0,50), açısal çarpıklık değeri 1/14 (sınır 1/200) olarak belirlenmiştir. Önlem alınmaması halinde meydana gelebilecek çökme miktarları ve deformasyon göstergeleri sınır değerlerin oldukça üzerinde olacaktır. Bu nedenle klasik ön destekleme elemanlarına ek olarak Yeni Avusturya Tünel Açma Yöntemi ön destek elemanları ile birlikte onlara ek olarak bu tür killi formasyonlarda boru kemer ve ayna çivisi uygulaması yapılması zorunlu görülmektedir.

Ayna çivisinin kullanıldığı durumda yapılan analizde ise aynadaki çiviye gelen eksenel kuvvet yaklaşık 103,72 kN buna karşılık oluşacak olan ayna konverjans miktarı ise 18,8 mm olmaktadır. Görüldüğü aynada meydana üzere gelecek deformasyon, ayna çivisi sayesinde % 60 azaltılabilmektedir. seviyesinde Aynada güçlendirme kullanılan elemanının taşıyabileceği maksimum eksenel kuvveti 350 kN olarak seçilmiş olup, bu durumda güvenlik faktörü 350/103,72=3,37 Kullanılmadığı olmaktadır. durumda güvenlik faktörü değeri ise 1,5 civarında olmaktadır. Bu durumda ayna çivisi kullanılmasının doğru bir tasarım olduğu da teyit edilmiş olmaktadır.

KAYNAKLAR

- Aksoy CO., Onargan T, Küçük K. Pamukçu P, Özacar V., vd., (2012), Kemalpaşa-Torbalı Ve Alsancak Limanı Bağlantısı Demiryolu Etüd Proje Ve Mühendislik İşi Ön Raporu.
- Arioğlu Ergin, Arioğlu, B., Arioğlu Erdem, Odbay, O., 1993, Metro Tünel Projelerinde Yüzey

Tasman Büyüklüklerinin Yarı - Teorik Yaklaşımlarla Belirlenmesi. Türkiye 13. Madencilik Bilimsel ve Teknik Kongresi, Maden Mühendisleri Odası, Ankara.

- Erdoğan, B., 1990, İzmir-Ankara Zonu'nun İzmir ile Seferihisar Arasındaki Bölgede Stratigrafik Özellikleri ve Tektonik Evrimi, TPJP Bülteni c.2/1-Aralık 1990. s.1-20.
- Jethwa, J.L., Singh, B., "Estimation of ultimate rock pressure for tunnel linings under squeezing rock conditions - a new approach". In: Brown, E.T., Hudson, J.A. (Eds.), Design and Performance of Underground Excavations, ISRM Symposium, Cambridge, 1984. pp. 231–238.
- Kıncal C., 2004, İzmir İç Körfezi Çevresinde Yer Alan Birimlerin Coğrafi Bilgi Sistemleri ve Uzaktan Algılama Teknikleri Kullanılarak Mühendislik Jeolojisi Açısından Değerlendirilmesi. D.E.Ü. Fen Bilimleri Enstitüsü Doktora Tezi, İzmir.
- Onargan, T., Aksoy, C.O., Küçük, K., vd., (2007), İzmir Hafif Raylı Sistem 3. Aşama Bornova Metro Tünel İnşaası Ön Ve Nihai Destekleme Projesi, İzmir
- Özbek, D., 1981, Altındağ Köyü (İzmir) Çevresinin Jeoloji ve Altındağ Taş Ocaklarının Mühendislik Jeolojisi, Bitirme Ödevi, Ege Üniversitesi Yerbilimleri Fakültesi Jeoloji Mühendisliği Bölümü, İzmir, s.54.
- Özer, S. ve İrtem, O., 1982, Işıklar-Altındağ (Bornova-İzmir) alanı Üst Kretase kireçtaşlarının jeolojik konumu, stratigrafisi ve fasiyes özellikler: Türkiye Jeol. Kur. Bült., 25, 41-47.
- Yüksel Proje (1997), İZRAY İzmir Hafif Raylı Sistemi 2. Aşama (1. Kısım) Ön Jeoteknik Değerlendirme Raporu,

Tünellerde Karstik Boşlukların Geçilmesi: Ankara-İstanbul YHT Projesi 19 no.lu Tünel Örneği

Initiation of Karstic Cavities in Tunnels: The Case of Ankara-Istanbul YHT Project Tunnel 19

E. Poşluk, K. Oğul

TCDD 2.Demiryolu Yapım Grup Müdürlüğü, Bozüyük, Bilecik

I. Topal Dumlupınar Üniversitesi, Maden Mühendisliği Bölümü, Kütahya

ÖZET: Bu çalışmada, Ankara-İstanbul hızlı tren projesinde yer alan 19 Nolu tünelde karşılaşılan karstik boşluk incelenmiştir. Bilecik il merkezinin 4 kilometre kuzeydoğusunda yer alan tünel 4070 metre uzunluğundadır. NATM ile güneyden kuzeye doğru yapılan tünel delme çalışmaları, Jura yaşlı Bilecik Kireçtaşlarında gerçekleştirilmektedir. Tünel kazısı ilerlerken Km: 202+575 ile Km:202+602 arasında yaklaşık 45 metre genişliğinde 27 metre devamlılığa sahip karstik boşluğa rastlanmıştır. Karstik boşluk yüzeylerinde deformasyonlar takip edilmiş, stabilite açısından soruna rastlanmamıştır. Tünele nihai şeklinin verilmesi ve uzun vadede karstik boşluk bölgesinde problem yaşanmaması açısından karstik boşluğun doldurulmasına karar verilmiştir. Bu amaçla hazırlanan projede tünel nihai şekli verildiğinde tünel destekleme elemanlarına yük oluşturmayacak bir şekilde boşluğun doldurulması öngörülmüştür.

ABSTRACT: In this study, the carstic gap came upon at the Tunnel 19 of Ankara-İstanbul High-Speed Train Project have been analyzed. The tunnel, which has 4070m length, is situated at 4 km north-east of Bilecik city center. The tunnel boring works from south to north have been executed on Bilecik Jurassic lime stones. During the tunnel boring works, a carstic gap with 45m width and 27 length came upon between the 202+575km and 202+602km. The deformations on the surfaces of carstic gap have been monitored and found no complication in terms of stability. It is determined to fill the carstic gap to give the final shape and not to have a trouble with carstic gap area. In this respect, when the tunnel has its final shape, it is proposed to fill the gap without loading on tunnel support members.

1 GİRİŞ

Karst ya da karstlaşma, erimeye uygun (kireçtaşı, jips, vb.) kayaçların suların etkisiyle kimyasal reaksiyonlar sonucunda boşluklar oluşması olarak tanımlanabilir. Kireçtaşı gibi karstlaşmaya uygun birimlerde tünel açarken yüzeysel çökme, tünel çökmesi, düden gibi beklenmedik sorunlarla karşılaşılabilir (Gongyu and Wanfang, 1999).

Masif kireçtaşı bölgelerinde, kireçtaşı korezyonu ile oluşan boşluklarda yeraltı suyu ile kalsitin kimyasal reaksiyonu söz konusudur. Bu kimyasal reaksiyonda açığa karbondioksit çıkar. Oluşan boşluğun boyutu ve devamlılığı ise kireçtaşı ile su arasındaki aktivite ile çatlak ve süreksizlikler gibi jeomekanik özellikler kontrolündedir. Eklem yönelimleri yeraltı suyunun akış yönü oluşan boşluğun konumunu kontrol eder. Eklemlerin konumu ve yeraltı sularının akış kanalı oluşturabilmesi çözülme sürecini hızlandırır. Kayaçlardaki çözünebilir mineral içerikleri karstlaşma hızını kontrol eder. İyi

gelişmiş bir karstik boşlukta ince bir toprak örtüsü, yeraltı suyu ve bu suyun hareketini sağlayan kanallar bulunmaktadır (Parise ve diğ., 2008).

Bu çalışmada, Ankara-İstanbul hızlı tren projesinde yer alan ve daha önceki çalışmalardan karstlaşma potansiyeli bilinen kireçtaşları içerisinde açılan 19 nolu tünelde karşılaşılan küçük-orta ölçekli 2 basamak halinde bulunan karstik boşluğun (mağaranın) yapısı incelenmiştir. Tünel tamamlanmasının ardından uzun vadede bu boşluğun stabilite problemi yaratmaması açısından ne gibi tedbirlerin alınması gerekliliği üzerinde durulmuştur.

2 PROJENİN TANITIMI

Ankara-İstanbul Hızlı Tren Projesinin amacı; ülkemizin en büyük iki kenti olan Ankara ile İstanbul arasındaki sevahat süresinin azaltılması, hızlı, konforlu ve güvenli bir yaratılarak ulasım imkânı ulaşımdaki demiryolu payının artırılmasıdır. Ankara-İstanbul arasındaki mevcut hat toplam 576 km'dir. Ankara-İstanbul Hızlı Tren Projesinin tamamlanması sonucunda, iki büyük kent arasında cift hatlı, elektrikli, sinyallizasyonlu ve 250 km/s hıza uygun yeni bir demiryolu inşa edilecek ve Ankara-İstanbul arası 533 km ye inecektir. Ankara-İstanbul Hızlı Tren Projesinin 2. etabı olan, Köseköy-İnönü arası toplam 150 km 95 uzunluğunda olup. Kesim-1; km (KÖSEKÖY-VEZİRHAN) ve Kesim-2; 55 (VEZİRHAN-İNÖNÜ) seklinde km projelendirilmiştir (Çizelge 1).

Çizelge 1. Ankara-İstanbul yüksek hızlı tren projesi ikinci etap mühendislik yapıları

Özellik	Kesim 1	Kesim 2	Toplam
Uzunluk	95 km	55 km	150 km
Vinadüla	18 ad.	13 ad.	31 ad.
viyaduk	(6.120 m)	(6.582 m)	(12.702 m)
Delme	13 ad.	19 ad.	32 ad.
Tünel	(25.700 m)	(27.210 m)	(52.910 m)
Aç-Kapa		1 ad.	1 ad.
Tünel	-	(1.090 m)	(1.090 m)

3 TÜNEL YERİ VE JEOLOJİK ÖZELLİKLERİ

Tünel güzergâhı, Bilecik-Vezirhan arasında, 4070,27 m uzunluğunda, km:198+910,38 ile km:202+980,65 arasında yer almaktadır. Tünel girişi yaklaşık 214 rakım ile başlayıp en fazla 511 m'lere kadar yükselirken tünel çıkışında 259'lere düşmektedir (Şekil 1). Tünel üzerindeki örtü kalınlığı 6 ile 150 m arasında değişmektedir.

Şekil 1. Çalışma alanı yer bulduru haritası

Karstik boşlukla karşılaşılan birim kireçtaşıdır (Şekil 2). Bu kireçtaşı, pembemsi beyaz-kirli beyaz renkte, sert dayanıma sahip ve genellikle az ayrışmıştır. Tabakalanma belirsizdir. Yer yer demir oksit boyamaları ile küçük karstik boşluklar gözlenmektedir. Literatürde bu kireçtaşlarına Bilecik Kireçtaşı adı verilmektedir (Şimşek, 2010).

Bilecik Kireçtaşı ismi, Bilecik şehir merkezi ve civarında oldukça sürekli mostrası olan kireçtaşları için ilk olarak Granit ve Tintant (1960) tarafından kullanılmıştır.

Bilecik Kireçtaşı genellikle mikritik, sparitik, oolitik ve yer yer kumlu kireçtaşlarından oluşur. Genellikle dış yüzeyleri beyazımsı ve grimsi renkli; iç yüzeyleri ise bej, sarımsı-pembe, kırmızımsıpembe, krem renklidir. Genelde orta-kalın katmanlı, süreksizlik düzlemleri boyunca yer yer erime boşluklu olarak gözlenmektedir. Birim, sert-sıkı, kompakt, keskin köseli, düzensiz kırıklı (konkoidal), kırık ve çatlakları kil ve kalsit dolgulu, mercekli, kuvars damarlı ve oldukça homojen bir karbonat istifinden oluşmuştur (Gürpınar, 1976)

Tipik bir platform karbonatları özelliğinde olan Bilecik Kireçtaşı denizel ortamda çökelmiştir. Birimin içinde görülen kumlu ve oolitik kireçtaşları ortamın sığ denizel çökelme ortamı olduğunu gösterir (Eroskay, 1965). Granit ve Titant (1960) yaptıkları çalışmada kireçtaşlarının yaşını Orta-Üst Jura ve Üst Jura olarak saptamışlardır.

Şekil 2. 19 nolu tünel jeolojik enine kesiti

4 TÜNEL KAZI YÖNTEMİ

19 nolu tünelde Yeni Avusturya Tünel Açma Yöntemi (NATM) kullanılmıştır. Yeni Avusturya Tünel Açma Yöntemi (NATM), dünyada kullanılan en yaygın tünel açma vöntemidir (Poşluk ve diğ., 2011). NATM, temel tünel açma kavramını değiştirerek tünel profilini çevreleyen kaya kütlesini yük oluşturan bir eleman yerine yük taşıyan bir eleman haline dönüştürmüştür. Tünel profilini oluşturan kaya kütlesini dengelemek için püskürtme beton kaplama ve kaya bulonundan yararlanılmaktadır (Guan ve diğ., 2007). Güvenli bir tünel tasarımı için temel parametreler, açıklığı çevreleyen kaya kütlesinin özellikleri, tünel boyutu, tünelin geometrisi ve kullanılan destek sisteminin

özellikleridir (Özsan ve Karpuz, 2001). NATM'in bir diğer avantajı ise farklı tünel çaplarında ve farklı jeolojik koşullara uygulanabilmesidir (Ayhan ve Topal, 2005).

Bu çalışmanın yapıldığı 19 no.lu tünelde parçalı kazı tekniği kullanılmıştır. Kazı 2 ana parçadan oluşmakta olup, bu parçalar, üst yarı ve alt yarıdır (Şekil 3). Üst yarı 5,80 metre yüksekliğinde, alt yarı ise 4,40 yüksekliğindedir. Tünelin toplam yüksekliği 10,20 metre, genişliği ise 13,30 metredir. Toplam kazı alanı ise 123,95 m²'dir (Şekil 3).

Şekil 3. Tünel kazı aşamaları ve tünel kazı bilgileri

5 KARSTİK BOŞLUĞUN ÖZELLİKLERİ

T19 tünelinde yapılan kazı çalışmaları esnasında km:202+574'de karstik boşluk ile karşılaşılmıştır (Şekil 4). Karstik boşluk içerisinde yer yer sarkıt ve dikitler bulunmaktadır (Şekil 5). Bu durum düşük miktarda su varlığını göstermektedir. Karşılaşılan karstik boşluk 45 metre genişliğinde 27 m. uzunluğundadır. Karstik boşluk içerisinde roleve çalışmaları yapılmış olup büyüklüğünün 10.000 m3 civarında olduğu sonucuna varılmıştır (Şekil 6, 7, 8).

Şekil 4. Karstik boşluktan bir görünüm

Şekil 5. Sarkıt ve dikitler

Şekil 6. Km:202+574,50 kesiti

Şekil 7. Km:202+576,50 kesiti

Şekil 8. Km:202+580,00 kesiti

Km: 202+575 ile km:202+602 arasında karşılaşılan karstik boşluktan sonra, tünel kazısına tekrar başlanılmıştır. Ancak yapılan kazı aşamalarında yukarıda belirtilen karstik boşluğun devamı olan km:202+557,00km:202+565,00 arasında bulunan karstik boşlukla taban bölümünde karşılaşılmıştır (Şekil 9).

Şekil 9. Alt yarı kazısı sırasında karşılaşılan karstik boşluk

Şekil 10. km:202+575 ile 202+602 arasında karşılaşılan karştik boşluk rolevesi

6 KARSTİK BOŞLUĞUN DOLGU VE DESTEK SİSTEMİ

Karşılaşılan karstik boşluklarla ilgili ayrıntılı roleve çalışmalarının ardından karstik boşluk vüzevine 10 cm kalınlığında püskürtme beton ile kaplanmıştır. Karstik boşluk duvarlarındaki hareketliliğin belirlenmesi amacıyla yüzeylerde 13 noktada optotrigonometrik yöntemle konverjans ölçümleri yapılmıştır. Bu ölçümler neticesinde herhangi bir hareketlilik tespit edilmemiştir.

Karstik boşluğun uzun vadede tünelde stabilite problemi yaratmaması, işletme emniyeti açısından son derece önemlidir. Bu noktadan hareketle tünel nihai şeklinin verilmesinin ardından karstik boşluğun doldurulması gerektiği sonucuna varılmıştır. Bu amaçla, boşluk tünelden çıkan kireçtaşı malzemesi ile oluşan bu boşluk tünel kesitine en az 1 m mesafede olacak şekilde doldurulmalıdır (Şekil 11, 12, 13). Yapılan dolgu 2Y:3D olacak şekilde dolgusu yapılmalıdır. Dolgunun üzerine 1 kat hasır çelik ile 15 cm püskürtme beton atılmalı, daha sonra dolgunun içerisinde kalacak boşlukların doldurulması amacı ile 4 m kendinden delen bulonlar çakılarak dolgunun stabilitesi sağlanmalıdır.

Doldurulamayan dolgu üzerinde kalacak boşluklar ise köpük malzemesi ile doldurulmalıdır. Köpük malzemesinin özelliği, tünel kaplamasına yük getirmeyecek şekilde hafif olmalı ayrıca uzun dönemde de oluşabilecek yüklere karsı dayanım gösterecek şekilde dayanımı yüksek bir malzeme olmalıdır.

Tünel kesitinin etrafındaki boşluk miktarı dikkate alındığında, boşluğun tam olarak doldurulması için kalıp yapılıp, bu kalıbın arkasına köpük dolgu malzemesi doldurulmalıdır. Kalıp oluşturulurken, bu kesim hasır çelik veya hafif iksalardan olabilir. Kalıbın arkası doldurulduktan sonra ise geri kalan kısmın dolgusu daha daha stabil bir şekilde yapılabilmektedir. En son aşamada ise, tünel üst yarısından itibaren, 75 cm aralıklı I200 tipi iksalar konulmalı ve daha sonra ise etrafi hasır çelik ile sarılmış sekilde kaplanmalıdır. Sonraki aşamada ise tünel kesiti ile boşluk arasında kalan boşlukta vine köpük dolgu malzemesi ile doldurulmalıdır. Dolgu islemi tamamlandıktan sonra ise, iksaların üzerine 20 cm püskürtme beton kaplaması atılarak bu bölgenin duraylılığı sağlanmalıdır.

Üst yarıda yapılan bu işlem, alt yarı kazıları esnasında da uygulanmalıdır. Ayrıca tünel kazısı esnasında, karstik boşluğun devam edip etmeme durumunu görmek amacı ile tabana ve yanlara doğru delikler delinerek boşluğun olup olmadığı mutlaka kontrol edilmelidir.

Şekil 11. Dolgu ve destekleme adımları, km:202+547,50

Şekil 12. Dolgu ve destekleme adımları km:202+576,50

Şekil 13. Dolgu ve destekleme adımları, km:202+580,00

Tünel tabanında devam eden karstik boşluk için yapılacak dolgu için ise (km:202+557,00-km:202+565,00) uzun dönemde oturma yapmaması ve dinamik yükü taşıyabilmesi gerekmektedir. Bununla birlikte, tabanda yapılacak dolgununda, rayların stabilitesi acısından büyük önemi vardır. Zira tünel içerisinde oluşabilecek en kücük oturma, tamirat ve bakım sırasında büyük zaman kaybına yol açacaktır. Bundan dolayı bu kesimin geçilmesi için tabanın -3.65 kotuna kadar grobeton ile doldurulması ve -3.65 ile -1.65 kotu arasında da 2 m kalınlığında 2 kat hasır çelik içeren C25 beton ile kaplanması uygun olacaktır (Şekil

14). Böylelikle yapılacak beton karstik boşluğun her iki tarafından 10 ar m'lik bir sağlam kayaya oturarak, oluşabilecek oturmaların önüne geçilecektir.

Şekil 14. Km:202+557 ile km:202+565 arasında karşılaşılan karstik boşluk dolgu planı

7 SONUÇ VE ÖNERİLER

19 no.lu tünel kazısı sırasında yaklaşık 10,000 m³ büyüklüğe sahip karstik boşluğa rastlanmıştır. Düşük miktarda su geliri saptanan karstik boşlukta uzun dönemde stabilite problemi yaşamamak için dolgu yapılmasına karar verilmiştir. Bu amaçla tünel kazısından çıkan kireçtaşı tünel kesitine en az 1 m mesafede olacak sekilde doldurulmalı bu dolgunun stabil hale getirilmesi için enjeksiyon (su-çimento karışımı) yapılmalıdır. Tünel kesiti oluşturulduktan sonra ise tünel kesiti ile kireçtaşı dolgusu arasında kalan kısım düşük yoğunluklu yüksek dayanımlı köpük ile doldurulmalıdır.

Tünel kazısı sırasında tünel tabanında devam eden bir başka karstik boşluk (km:202+557,00-km:202+565,00) ile daha karşılaşılmıştır. Bu karstik boşluk için yapılacak dolgu için ise uzun dönemde oturma yapmaması ve dinamik yükü taşıyabilmesi gerekmektedir. Bu amaçla boşluk bölgesinin betonla doldurulması uygun olacaktır.

Kireçtaşı içerisinde yapılacak olan kazılarda irili ufaklı karstik boşluklar ile karşılaşılması muhtemeldir. Küçük ölçekli boşluklar patlatma veriminin düşmesi sonucunu doğuracağından patlatma delgisi sırasında bu konuya dikkat edilmelidir. Büyük ölçekli boşlukların ani oturmalar ve göçmeler yaptığı bilindiğinden onar metrelik aralarla tünel aynasından tabana ve yanlara doğru 12 m uzunluğunda delgiler Böylelikle yapılmalıdır. muhtemel boslukların önceden tespiti mümkün olacak ve bu bölgede gerekli önlemler alına bilecektir.

Tünel açma çalışmaları sırasında çıkan kireçtaşlarından uygun büyüklük ve özellikte olanlar tünel çıkış ağzının yakınında bulunan depo alanında depolanmıştır. Tünel açma çalışmalarının ardından (Şubat 2013 sonuna kadar tünel açma çalışmalarının biteceği öngörülmektedir) karstik boşluktaki deformasyon okumaları tekrar değerlendirilecek dolgu ve projesi uygulanacaktır.

KAYNAKLAR

- Ayhan, M., Topal, E., Excavation and support design of the Dicle-Kralkizi water tunnel: an overview, *Tunnelling and Underground Space Technology* 20 (2005) 81–87.
- Eroskay, S.O., 1965, Pasalar bogazı-Gölpazarı sahasının jeolojisi, *İ.Ü. Fen Fak. Mecm. Seri B*, XXX, 3–4, 135–170.
- Gongyu, L., Wanfang, Z., 1999, Sinkholes in karst mining areas in China and some methods of prevention, *Engineering Geology*, 52, pp. 45–50
- Granit, Y. ve Tintant, H., 1960, Observations preliminaires sur le Jurassique de la region de Bilecik (Turquie), C.R. Accad. Sci., 251, 1801-1803.
- Guan, Z., Jiang, Y., Tanabasi, Y., Huang, H., 2007, Reinforcement mechanics of passive bolts in conventional tunneling, *International Journal of Rock Mechanics & Mining Sciences*, 44, 625– 636.
- Gürpınar, O., 1976, Geological investigation of the Bilecik-Inegöl-Yenisehir territories together with a study of engineering properties of the Bilecik limestone, *İ.Ü. Fen Fak. Mecm. Seri B*, 40 (1–4), 83–113.
- Özsan, A., Karpuz, C., 2001, Preliminary support design for Ankara subway extension tunnel, *Engineering Geology* 59, 161±172.
- Parise M., Waele J.D., Gutierrez F., 2008, Engineering and environmental problems in karst

an introduction, *Engineering Geology*, 99 pp. 91–94

- Poşluk, E., Oğul, K., Topal, İ., Korkanç, M., Aygar, E.B., 2011, Tünellerde zayıf kaya davranışı, Ankara – İstanbul Yüksek Hızlı Tren Projesi 34 nolu tünel örneği, *KAYAMEK' 2011- X. Bölgesel Kaya Mekaniği Sempozyumu*, 8-9 Aralık 2011, Ankara, Turkey, s:31-37
- Şimşek, O., Aygar, E.B., Ertin, A., İnönü-Köseköy hızlı tren projesi Vezirhan Ripajı Tünel Raporları. SİAL Yer Bilimleri Ltd. Şti., 2010.

Finite Element Modeling of Borehole Breakouts: Initiation, Propagation and Stabilization

S. Nadimi, M. Gomar National Iran Oil Company- Exploration directorate, Tehran, Iran

K. Shahriar Amirkabir University of Technology, Tehran, Iran

ABSTRACT Borehole breakouts are elliptical-like holes caused by unequal in situ stresses during the drilling of oil and gas wells. Breakouts caused by in situ stresses around wellbore would affect cutting transport, casing design and cementing program, pipe stuck, and etc. Therefore, predicting breakout shape, size, and influencing parameters will help in estimating in situ stresses and finally drilling operation. In this paper, a numerical finite element simulation was conducted to analyze factors affecting in breakout initiation and propagation. Also, the stability of breakouts was studied to explain why breakouts eventually stabilize in an elliptical pattern under higher external stresses which are needed for further breakout propagation.

Keywords: Borehole, Breakout, Finite Element

1 INTRODUCTION

Stress-induced breakouts are rock failure zones around a borehole wall created by in situ rock stresses. Understanding of the mechanics of breakout formation is essential for successful well operation, i.e. drilling, completion and maintenance. Although excess breakouts are detrimental to borehole stability, their occurrence can be beneficial by providing important clues regarding the directions and magnitudes of the stress field. Early reports of stress-induced breakouts came from Leeman (Leeman, 1964). Cox observed a consistent pattern in the directions of the elongations of wellbores in results from high-resolution dip meter field studies (Cox 1970). Later, Mastin, Haimson and Herrick, Zheng et. al., Lee and Haimson , Song and Hamison and others showed that stress-induced borehole breakouts are aligned with the direction of minimum in situ stress (Mastin 1984), (Haimson and Herrick 1985, 1986), (Zheng et. al. 1989), (Lee and Haimson 1993), (Song and Hamison 1997).

Compressive (breakout) and axial tensile induced failure are commonly taken as reliable indicators of the minimum and maximum horizontal in situ stress orientation, respectively.

Moos and Zoback, Vernik and Zoback Papamichos and others conducted some researches on the parametric analysis of factors affecting borehole stability and breakouts (Moos and Zoback 1990) (Vernik and Zoback 1992), (Papamichos 2004, 2010). In this work a numerical finite element simulation along with Mohr Coloumb failure criterion were conducted to analyze factors affecting in breakout initiation, propagation and stabilization.

2 STATE OF IN VICINITY OF A VERTICAL BOREHOLE

The state of stress in the vicinity of a vertical borehole depends on the rock mechanical properties. In the simplest case, which is the one most often used to simulate brittle rock behavior, linear elasticity is assumed. The stress distribution around a circular hole can be calculated by a modification of Kirsch (1898) solution for two dimensional cases as follow,

The state of stress in the vicinity of a vertical borehole drilled into the earth's crust depends on the rock mechanical properties. In the simplest case, which is the one most often used to simulate brittle rock behavior; linear elasticity and isotropy are assumed. In addition, it is assumed that the vertical stress is a principal stress component, which conditions of plane strain apply. In this case the state of stress can be expressed by the well-known Kirsch (1898) equations for a hole in an infinite plate (modified by Fairhurst (1968)) for the case of plane strain and for drilling a hole in an already stressed earth's crust,

$$\begin{split} \sigma_{r} &= \frac{\sigma_{H} + \sigma_{h}}{2} \left(1 - \frac{R_{w}^{2}}{r^{2}} \right) + \frac{\sigma_{H} - \sigma_{h}}{2} \left(1 + 3\frac{R_{w}^{4}}{r^{4}} - 4\frac{R_{w}^{2}}{r^{2}} \right) \cos 2\theta + p_{w} \frac{R_{w}^{2}}{r^{2}} \\ \sigma_{r} &= \frac{\sigma_{H} + \sigma_{h}}{2} \left(1 + \frac{R_{w}^{2}}{r^{2}} \right) - \frac{\sigma_{H} - \sigma_{h}}{2} \left(1 + 3\frac{R_{w}^{4}}{r^{4}} \right) \cos 2\theta - p_{w} \frac{R_{w}^{2}}{r^{2}} \\ \sigma_{z} &= \sigma_{v} - 2\nu \left(\sigma_{H} - \sigma_{h} \right) \frac{R_{w}^{2}}{r^{2}} \cos 2\theta \\ \tau_{r\theta} &= -\frac{\sigma_{H} - \sigma_{h}}{2} \left(1 - 3\frac{R_{w}^{4}}{r^{4}} + 2\frac{R_{w}^{2}}{r^{2}} \right) \sin 2\theta \quad (1) \end{split}$$

Where compressive stresses are negative; σ_r , σ_{θ} , $\tau_{r\theta}$, σ_z are the radial, tangential, shear, and vertical stresses, respectively, acting around the borehole wall; σ_H and σ_h are the maximum and minimum in situ (far-field) horizontal principal stresses; σ_v is the vertical in situ stress; r is the radial distance from the axis of the hole, R_w is the borehole radius, θ is the angular direction measured counter-clockwise from the σ_H direction.

At the borehole wall the principle stresses reduces to

$$\sigma_r = p_w$$

$$\sigma_r = \sigma_H + \sigma_h - 2(\sigma_H - \sigma_h)\cos 2\theta - p_w$$

$$\sigma_z = \sigma_v - 2\nu(\sigma_H - \sigma_h)\cos 2\theta \qquad (2)$$

Since the model is assumed to be linearly elastic, the largest stress differences occur at the borehole wall, hence rock failure is expected to initiate there. There are several conditions for which the borehole may fail, depending on the relative magnitudes of the principal stresses and bore hole pressure, pw. It is obvious from Eq. (1) and Eq. (2) that the largest principal compressive stress at the borehole wall is the tangential component, σ_{θ} acting along the σ_{h} springline. Moreover, σ_{θ} is the maximum stress along the σ_h springline (Fig. 1) for some distance away from the borehole.

Figure 1. Cross-section of a vertical borehole showing the far-field principal stresses in the plane, and defining the polar coordinates r and θ_{\uparrow} the local stresses σ_r , σ_{θ} and the σ_h springline.

3 NUMERICAL PROCEDURE

3.1 Model Description

We use a continuum approach and a validated finite element code, FLAC3D (Itasca, 2002). The model is constructed to simulate the borehole breakouts: initiation, propagation, and stabilization

The model concerns a borehole with diameter of 20 cm (Fig. 2). Mechanical and

physical properties which are assigned to model were derived based on laboratory and field tests (Table 1). The in situ stresses are close to those estimated from nearby wellbores where the horizontal stresses are anisotropic, and the effect of drilling fluid inside the wellbore on the mechanical strength of the rock has not been taken into account. The formation under consideration is a non porous anhydrite rock containing dispersed amount of clays.

Table 1. Rock mechanical properties and drilling parameters

Parameter	Value
Borehole radius (m)	0.2
Bore hole pressure (MPa)	16
Vertical stress (MPa)	67
Minimum horizontal stress (MPa)	35-40-45-50-55
Maximum horizontal stress (MPa)	55
Poisson ratio	0.23
Young's Modulus (GPa)	48.21
Cohesive Strength (MPa)	9.1
Internal friction angle (deg)	30
Rock Density (kg/m3)	2700

Figure 2. Numerical model of simulated cylindrical borehole

The standard Mohr-Coulomb model has been applied to study wellbore stability and the damage zone around it. The failure envelope for this model corresponds to a Mohr-Coulomb criterion (shear yield function) with tension cutoff (tension yield function). The position of a stress point on this envelope is controlled by a nonassociated flow rule for shear failure and an associated rule for tension failure.

3.2 Influence of Horizontal Stresses on Stability Condition of Borehole

The orientation of breakouts due to failure of stress-induced wellbore breakouts related to the orientation of the horizontal stresses. It is clear that the maximum tangential stress occurs in the direction of the minimum horizontal stress, and hence shear failure at the borehole wall will initiate in the direction of the minimum horizontal stress.

Anisotropy in the material properties of the rock also affects the orientation of breakouts which is not considered here. When the horizontal stress is isotropic, the breakouts tend to be oriented normal to the joints of bedding in the material (Kaiser et al., 1985).

The simulations further gave the important result that the elongated borehole becomes stable when it has reached a specific shape. shape depends on the actual This combination of stresses and strength, and also on the stress path. In these simulations, a breakout is initiated as a slab of rock covering a certain angle of the borehole wall which then is spalled off. This causes further stress concentrations in front of the spalled region, and further spalling takes place within this sector of the borehole. Thus, once a breakout is initiated within a sector, it will not become wider, but will deepen until it reaches its stable shape. Fig. 3 shows numerical simulation of breakout tip locations for various values of horizontal stresses. It worth mentioning that the Figure 3 shows only the orientation of the induced stresses around the borehole with various deviatoric horizontal stresses $(\sigma_{hmax} - \sigma_{hmin})$, which may not reach to failure criterion envelope. It is obvious that orientation of the horizontal stresses and magnitude of deviatoric horizontal stresses $(\sigma_{h \text{max}} - \sigma_{h \text{min}})$ have significant effect on shape and orientation of breakout zone. In other word, when $(\sigma_{h \max} = \sigma_{h \min})$, the breakout zone is symmetrical around the borehole; whenever $(\sigma_{h\max} \neq \sigma_{h\min})$, the orientation of breakout zone will spread alongside of the (σ_{hmin}) .

Figure 3. Numerical simulation of breakout tip locations for various values of horizontal stresses.

Figure 4 shows the representation of the Mohr-Coloumb criteria and shear stress in several deviatoric horizontal stresses at depth ratio of 0, 0.5, 1, 1.2 and 2. At depth ratio of

1 with deviatoric horizontal stresses of $\sigma_{hmax} = 55$, $\sigma_{hmin} = 30$, and $\sigma_{hmax} = 55$, $\sigma_{hmin} = 35$, the points located under the Mohr-Colomb criteria and does not prone to failure; on the

other hand, at the same location with deviatoric horizontal stresses of $\sigma_{hmax} = 55$, $\sigma_{hmin} = 50$, and $\sigma_{hmax} = 55$, $\sigma_{hmin} = 55$, the points located above the Mohr-Colomb criteria and breakout is initiated due to the stress-induced mechanism.

Zheng et al. (1989) analyzed numerically the breakout development and suggested that the reason for the increased breakout stability is the fact that at some distance from the breakout tip, the deviatoric stress decreases with increasing breakout depth while the hydrostatic stress increases.

Figure 4. Mohr-Colomb criteria and shear stress in several deviatoric horizontal stresses at depth ratio of 0, 0.5, 1, 1.2 and 2

Figure 5. shows states of shear stress around the borehole at depth ratio of 0, 0.5 and 1, under different deviatoric horizontal stresses

Figure 5 shows states of shear stress around the borehole at depth ratio of 0, 0.5 and 1, under different deviatoric horizontal stresses. With increasing the depth ratio to r/r1=1, the shear stress decreased

significantly and it reach to shear strength of the rock.

Figure 6 shows analytical solutions of breakout tip locations for various values of minimum horizontal stresses. Each line corresponds to specific values of stresses for different radii measured from center of the hole along the minimum horizontal stress springline. For each conditions of stress, the region above the failure criterion line shows the distance away from the borehole wall which has been spalled away. The spalled spans are selected to be the distance equivalent to the intersection of the failure criterion and stress paths for each condition and are reported in the legend. Those parts of the lines below the failure line shows the condition where the imposed shear stress is less than the shear strength of the rock, so no more breakout happens. As the radii in the legend show, maximum distance which is spalled away is corresponding to the conditions which have greatest difference of in situ stresses.

Figure 6. Analytical solutions of breakout tip locations for various values of minimum horizontal stresses-for different radii measured from center of the hole

4 CONCLUSIONS

The breakouts of cylindrical boreholes with various deviatoric horizontal stresses have been studied analytically and analyzed numerically. To simulate the evolution of a borehole breakout, this process is combined with a numerical boundary element analysis of the stresses around a borehole as its cross section evolves from the originally circular shape to that of a stable breakout. The tangential stresses around a stable breakout cross section are found to be everywhere less than the unconfined, plane strain tensile or compressive strength of the rock. The stresses outside the stable breakout are found to be everywhere less than the limiting values of shear strength given by a Mohrcriterion. According to the Coulomb numerical simulation the orientation of the horizontal stresses and magnitude of deviatoric horizontal stresses have significant effect on shape and orientation of breakout zone. Reaching to the elliptical shape, borehole rapidly become stable, also the induced stresses in elliptical shape reduced under the failure criterion envelope more rapidly. As increasing the depth ratio to r/r1=1, the shear stress decreased significantly and it reach to shear strength of the rock.

REFERENCES

- Cox, J. W., (1970) The high resolution dipmeter reveals dip-related borehole and formation characteristics, in 11th Annual Logging Symposium, Soc. Of Prof. Well Log. Anal., Los Angeles, CA.
- Fairhurst C, (1968) *Methods of determining in situ* rock stresses at great depth. Technical report I-86, Missouri River Division, US Army Corps of Engineers.
- Fjær, E, Holt, R.M, Horsrud, P, Raaen, A.M, Risnes, R, (2008) *Petroleum Related Rock Mechanics*, 2nd edition, Elsevier, Amsterdam, 103-173
- Haimson bc, Herrick CG. (1985) In situ stress evaluation from borehole breakouts -

experimental studies In: Ashworth E, editor. Proceedings of the 26th U.S rock mechanics symposium. Rotterdam: A.A. Balkema; P. 1207-18.

- Haimson BC, Herrick CG. (1986) Borehole breakouts – a new tool for estimating in situ stress? In: Stephansson O, editor. Proceedings of the first international symposium on rock stress and rock stress measurement. Lulea: Centek Publications; P.271-81.
- Itasca Consulting Group, Inc. Flac 3d (3 Dimensional Distinct Element Code Manual), Version 4.1. Minneapolis: ICG, 2002.
- Kaiser, P.K., Guenot, A., Morgenstern, N.R. (1985) Deformation of small tunnels. IV. Behaviour during failure, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 22, 141–152.
- Kirch (1898). Die theorie der Elastizitat und die bedurfnisse der Festigkeitslehre. Zeitschrift des Vereines deutscher Ingenieure 42, 797-807.
- Leeman ER, (1964) The measurement of stress in rock: I. The principles of rock stress measurement: II. Boreholerock stress measuring instrument: III. The results of some rock stress investigations. J S Afr Inst Min Met; 65 45-114, 254-284
- Mastin LG. (1984) *Development of borehole breakouts in sandstone*. M. S. thesis, Standford University
- Moos D. and Zobak M. D, (1990) Utilization of observation pf well bore failure to constrain the orientation and magnitude of crustal stresses: application to continental, deep sea drilling project, and ocean drilling program boreholes, J. Geophys. Res., 95, 9305-9325.
- Papamichos E, (2010) Analysis of borehole failure modes and pore pressure effects, Computers and Geotechnics, 37, 141-152
- Papamichos, E, Liolios, P, van den Hoek, P.J (2004), Breakout stability experiments and analysis, the 6th North America Rock mechanics Symposium (NARMS), Houston, Texas, June 5-9.
- Vernic L. and Zobak M. D, (1992) Estimation of maximum horizontal principal stress magnitude from stress-induced wellbore breakouts in the Cajon Pass scientific research borehole, J. Geophys. Res., 97, 5109-5119
- Ziqoing Zheng, John Kemeny, and Neville G. W. Cook (1989), *Analysis of Borehole Breakouts*, J. of Geophys Research, Vol 94, NO. B6, 7171-7182.

The Study Stability of Toyserkan Doolayi Tunnel Using Reinforce Shotcrete and Rock Bolt under Static Condition

P. Jalilvand, S. S. Haghshenas

Department Of Civil Engineering, Islamic Azad University, Arak Branch, Arak, Iran

ABSTRACT In this paper, tunnel's stability analysis by using of rock bolt and reinforce shotcrete systems is shown. In this research Toyserkan Doolayi Tunnel has been examined. doolayi tunnel faces collapses because of being in specific structural and petrological conditions. Also, because the level of underground water – especially in winter – comparing to tunnel is higher, we see the leakage of water especially from the tunnel's walls. In this paper , by exerting the compound system of rock bolt and reinforce shotcrete , and using FLAC 3D software which is based on numerical modeling methods , tunnel's stability under static conditions has been discussed . The conclusion of this research shows that exerting compound system not only stabilizes the tunnel, but also decreases the amount of displacement, settlement, stress and strain, considerably.

1 INTRODUCTION

According to the increasing developments of underground structures and the cost of construction these structures, and also in attention to its importance in inter-city transportation and intracity transportation, their stability to the dangers static and dynamic loads has to be studied, since in the time of injury and destruction, they will bring irreparable financial and human damages. In this regard, one of the most important parts of the tunnel design and construction is the system of tunnel holding. In general, the tunnel itself is not able to bear loads of adjacent rocks or materials after excavation. Therefore, it must be protected using appropriate equipment in order to be durable enough to resist loads (Gharoni and Naimi, 2009)

In this regard, numerous studies have been undertaken in the field of stabilizing tunnels that such studies are O. Aydan studies the tension and compression on rock bolts, Joseph Saffar Shahroodi studies the application of elements reinforcement of rock masses, and Hock and Braun's studies the stability of underground structures in rocks (Aydan, 1989, Shahrudi, Hook and Brown, 1997)

In this article, Toyserkan Doolayi Tunnel stability analysis under static loads through combined system of Rock Bolt and reinforced Shotcrete by using Flac 3D software.

2 THE STABILITY AND SUPPORT SYSTEMS OF TUNNELS

One of the important aspects in the design of underground structures is structural elements or supports which significant role to play in stabilizing soil and rock. Among the most important of these systems can be noted the ordinal of the following three methods.

2.1 Beam

The support can be used in resistant to bending structures and also where the limited bending moment occurs. Beams behavior like linear elastic materials without failure limit. However, we can consider an unlimited plastic momentum or plastic pin joint (the discontinuity in rotation) for them.

2.2 Cable (Rock Bolt)

The support system can be used in structures where the tensile capacity performance is important. In general, rock bolts consist of a simple and flat steel rod which is utilized to joint different layers and segments .To ensure this, at first a pit is made in rocks, then a steel bar would be tighten to it, so that the term "Rock Embroidering" is used for this. After tightening the bar, the other end will tie with nut and bolt.

2.3 Lining

The lining of tunnel after excavation, if necessary, will be used to protect against loss. However, there are cases when the rocks have sufficient strength, the lining is not used, but otherwise the use of Shotcrete, Concrete in situ and pre-built components is available. The support system when both normal (tension or compression) and shear interactions occur in structures can be used.

3 GEOLOGICAL AND GEOTECHNICAL CHARACTERISTICS OF THE AREA

Tuyserkan Doolayi tunnel have been drilled in one of the most stressful and most active structural zones of Iran (Sanandaj - Sirjan). Because Doolavi tunnel being under certain Petrologic and structural conditions, it is facing problems and several losses. Intrusive acidic and alkaline masses are abundant in this zone. Schist and amphibolites are the remnants of the enormous orogenic in this zone. Also at the time of the Alvand batholith intrusion (pre-Paleocene), as showed in Figure 1, the rocks of the zone are subject to sophistication and metamorphism. And the hornfels of the tunnel are the results of this metamorphism of the schist; the specifications are in Table 1 (Ghasemi et al., 2004).

Figure 1 : Geological map of the area

Table 1. Geomechanical properties of cross-layer (Taradod Rah Consulting Engineers, 2004)

Building materials	Density (KN/m2)	UCS (Mpa)	GSI	Adhesion	Friction angle	Tensile strength (Mpa)	G.W.L	Height overburden (m)
Hornfels (weathered and chopped)	26	80	25	0.22	33.36	0.015	23 m above the tunnel roof	25

4 MODELING FOR STABILITY EVALUATION OF TUNNEL

The first step in FLAC 3D software is creating the geometry of the tunnel's model. On of the important tips on creating the geometry of model is allocating especial material properties and applying initial and boundary conditions of the model. In this paper, more than 42 different models for creating optimized geometry of the tunnel model were investigated. And considering the amounts of unbalanced forces, the results are shown in Figure 2, and created model of the software is in the Figure 3. (Itasca, 2005).

Figure 2 : Diagram of the conditions of unbalanced forces

Figure 3: Three-dimensional geometry of chosen cross section in Flac 3D software

4.1 The Ubiquitous Joint Model

This model is used for materials that have a behavioral model Mohr - Coulomb. Except that the resistance anisotropy of weak planes are well-represented. One of the applications of this model is to excavation in the material with close layers (Zammiran, 2012).

4.2 The Ubiquitous Joint Model

After creating the model geometry and properties are assigned to materials forming

Figure 4 : A View of excavated tunnel in Flac 3D software

4.3 Checking the Results of the Tunnel Analysis without Support

At this stage, after excavating the tunnel, the model have been analyzed statically and without support for the 8 selected points in different places, and the results are as follows. Because of the low tunneling resistance in this modeling, at this stage the software was not capable of completing the analysis due to the exceeding displacement

Table 2 - Characteristics of selected points in the tunnel

BD software

the tunnel in the next step, excavation in the model was performed with the values of the

span length of 10 m and a height of 5 meters,

as shown in Figure 4.

of the walls, ceiling and floor of the tunnel, and the analysis is completed by displays an error message in software.

4.4 Corresponding Data of the Selected Points in the Tunnel

This study analyzes eight different points on the ceiling, walls and floor of the tunnel to the left and right are considered as critical points with different coordinates in Table 2 has been noted, have been selected.

Characteristics of points	Selected points
X = 4(m), $y = 13(m)$, $z = 3(m)$	Α
X = -1.7(m), $y = 15(m)$, $z = 4.73(m)$	В
X = -5(m), $y = 25(m)$, $z = 0(m)$	С
X = -5(m), $y = 1(m)$, $z = -2(m)$	D
X = -5(m), $y = 10(m)$, $z = -5(m)$	E
X = 0(m), $y = 24(m)$, $z = -5(m)$	F
X = 5(m), $y = 49(m)$, $z = -5(m)$	G
X = 5(m), $y = 49(m)$, $z = 3(m)$	Н

4.5 Critical Values of the Displacement and Strain

One of the important parameters that are commonly used in the stability analysis of tunnels is the displacement value and strain rate in around of underground structure. The stability or instability of the structure can be achieved by estimating the amount of displacement in around of underground
space. If the displacement and strain rate around underground excavations is less than or equal to the critical value, then we can say that the structure is stable. Otherwise it will be unstable. Sakuraie and colleagues presented how to obtain the critical strain (εc) according to equation (1).

$$\varepsilon_{\rm cm} = \frac{\sigma_{\rm cm}}{E_{\rm cm}}$$
(1)

In equation (1), σcm is rock mass uniaxial compressive strength, and **Em** is Young's modulus of the rock mass. The significant point is that the critical strain is always the strain of rock in the time of destroying. To calculate the rock mass critical displacement equation (2) can be used.

$$U_{cm} = \varepsilon_{cm} \times a \qquad (2)$$

In equation (2), **a** is the radius of the tunnel and **Ucm** is critical displacement.

With regards to the equations (1) and (2), calculate the critical values of the displacement and strain in the tunnel (Sakuraie, 1999).

$$\epsilon_{cm} = \frac{\sigma_{cm}}{E_{cm}} = \frac{80 \times 10^{6} 6}{3.5 \times 10^{6} 9} = 0.023$$
$$U_{cm} = \epsilon_{cm} \times a = 0.023 \times 5000 = 115 \text{mm}$$

After excavating a tunnel and implementing the model, the stability or instability of the model is examined. Among the important factors in the stability of the model, there are the displacement of the model space and the surrounding material behavior. Studies have found that the model was unstable, in which case we are forced to use a support system.

5 ANALYSIS OF THE MODEL WITH SUPPORT SYSTEM

During construction of underground structures, the deformations to a distance

from it, is plastic. And after this distance which is known as elastic radius, the deformations will be elastic. Failure of the rock mass around the tunnel does not necessarily means to tunnel loss. Since such materials still have the power of bearing load. But the thickness of the plastic zone should be smaller than the radius of the tunnel. If the plastic zone was large and the large internal displacements occur in wall, then the loosening of the falling rock mass may be lead to large losses and falling of the un-support rock mass.

In fact, initial and basic support would control the wall displacement and prevents loosening of the rock mass. Installation of rock bolts and Shotcrete reinforced system, plays a major role in the control of deformation and loss of tunnel.

5.1 Rock Bolts

One of the supporting systems of underground structures is Rock bolts. Past few decades, the application of rock bolts has been grown in strengthening gradients, walls, tunnels, especially in transport tunnels and mines. Rock bolts can be used locally or generally in each zone, if necessary. The use of rock bolts has been prevented from rocks falling, and also can make a profitable space in tunnels. Since the use of wood supporting and steel arcs will significantly decrease the profitable space of tunnels and will cause problems in transport engineering of mines. Rock bolts, Shotcrete, and metal mesh are used as an integrated system in combined supporting, which are good alternatives for steel arcs.

According to Figure 5, the local coordinates of the cables are determined by using two nodal points. Cables have two degrees of freedom in direction of its axis. One degree of freedom is included at each node. In this case, the x-axis is along the line connecting node 1 to node 2. Axis y is the image of this connecting line to the cable section.

Figure 5. A view of the model was reinforced with rock bolts and Shotcrete

After installing the supportings, displacement values in x, y and z directions, stress in x and z, the shear stress in x and z, the strain in x, y and z, and the shear strain rate were controlled. The results are in Table 3 and Figure 6.

Table 3. Comparison of the results obtained from the analysis of the tunnel, without supporting and with supporting

with supporting	without supporting	Critical points	
24.93	716.9	D	(mm) dis x
5.78×10^-3	0.06	А	(mm) dis y
5.12×10^-3	867	F	(mm) dis z
-3.05×10^5	-5.9× 10^5	G	(Pa) Stress x
-4.99× 10^5	-5.39× 10^5	D	(Pa) Stress z
9.15× 10^5	10.31× 10^5	А	(Pa) Shear stress x-z
0	0.72	D	Strain x
0	0		Strain y
0	0.87	F	Strain z
2.49× 10^-5	7.76× 10^-4	В	Shear strain rate

Figure 6. Graph comparing the results obtained from the analysis of the tunnel, without supporting and with supporting

Finally, according to the results of the modeling, the angles of alignment bars in the ceiling, walls and floor of the tunnel are 30 degrees against each other, 0 degree to the horizon, and 90 degrees to the horizon, respectively. And that is the best alignment mode. The optimal length of bars is 5 m in the roof, walls and floor of the tunnel. So you can see that the maximum value of the displacement along the vertical axis (axis z) has happened, is reduced to the value of 0.005mm from 867mm. And the stresses decreased -2.85×10^{5} and -0.4×10^{5} in x and z directions, respectively. Regarding the changes of strain values, it can be observed that all of values equal to 0, and eventually shear strain reduced.

5 CONCLUSIONS

Since the falling and loss in tunnels is one the most important problems of in underground structures, especially tunnels, and their stabilization to loads is very important and essential, we require using stabilizing factors in tunnel by analyzing the Doolayi tunnel of Tuyserkan and obtained results. So, Reinforced Shotcrete and Rock Bolt System were considered. In this regard, after performed analysis before and stabilizing the tunnel shows different behavior of the tunnel to loads. Finally, it can be concluded that the stabilizing of tunnels has significant effects in reducing the amount of tunnels displacement, stress and strain that can not be ignored.

ACKNOWLEDGEMENTS

Thanks to the dear teachers, Dr. Saba and Dr. Ghadimi, guided me during the study.

REFERENCES

- Gharoni Nick, M. Naimi, M. (2009), *The* maintenance of system reliability and minimize tunnel extracted paths, the Eighth Conference of the tunnel, Tarbiat Modarres University, Tehran
- Aydan, O, (1989), The stabilization of rock engineering structures by rock bolts, Ph.D Thesis, Nagova University, Japan.
- Shahrudi Youssef,S, *Application of armed elements in rock masses, Master's thesis*, Faculty of Civil Engineering, Amirkabir University of Technology, Tehran.
- Hook and Brown, *underground rock structures*, Translation Ahmad Fahimifar, Spring 1997, Soil Mechanics Laboratory, Department of Transportation Engineering, Tehran.
- Ghasemi, I. Bahlol, b. Toti, F. (2004), The relationship between microscopic structure and mechanical behavior of the Alvand aureole rocks and its effect on duplex stability Tuyserkan tunnel, Fifth International Conference of Engineering Geology and Environment, 6-8 February, Tarbiat modarres University, Tehran.
- Taradod Rah Consulting Engineers, (2004), reports on the second pass, doolayi Tuyserkan tunnel.
- Itasca . 2005. Flac 3D. User's Manual. Refer to " http://www.itascacg.com/flac 3D. html

- Zammiran, S. (2012), *Modeling and analysis of soil and rock structures*, Noavaran publishing company.
- Sakuraie, S.(1999). Lessons Learned from Field Measurements in Tunnelling . Tunnelling and Underground Space Technology, Vol.12, No. 4 , PP. 453-460.

Comparison Between Two Methods of Reinforcement of Face Tunnel - Study of a Real Case

H. Mokhbi Department of Civil Engineering, University of Jijel, Algeria

S. Messast Department of Civil Engineering, University of Skikda, Algeria

M. Mellas, Mabrouki, D. Benmeddour Department of Civil and Hydraulic Engineering, University of Biskra, Algeria

F. Hammoud Department of Civil Engineering, University of Batna, Algeria.

ABSTRACT The collapsing problem which is likely to occur suddenly at the tunnels faces requires to geotechnical engineers to consider additional measures to strengthen the temporary support. The objective of this work is to present a comparison between two methods of reinforcement used in a real case, namely in the Tunnel T4 of the East–West Highway in Algeria, the umbrella crown method (AGF) and the method called FIT. The comparison between the in-situ measurements of convergence and settlement then the numerical calculations results using the finite elements method shows clearly the efficacy of the FIT method for the kind of ground met.

Keywords: Tunnel, Reinforcement, Tunnel face, AGF method, FIT method.

1. INTRODUCTION

Tunnel's excavation on a soft soil requires, generally, a reinforcement of the tunnel face by pre-supporting or pre-confinement technique in order to ovoid possible collapse at the tunnel face; where consequences might be catastrophic for site workers on one hand to preserve the stabilization of the structure and to minimize deformations of the tunnel on the other hand. Among the methods, currently most used; we can mention the umbrella crown method and FIT method.

The umbrella crown method AGF (All Ground Fasten) is a supporting pattern technique which consists on reinforcing the face by bolting at the level of the crown, by setting longitudinal columns at the periphery of the face; often on the superior third or the quarter of the circumference. It is planned to reach a penetration length before the face equal to its high with an inclination of 8° à 10° . Often, the longitudinal columns are realized by metallic tubes with spacing between 20 and 50cm;

The FIT method (FRP tube for injection) is a pre-confinement technique which consists on reinforcing the tunnel face by bolting using tubular inclusion on GFRP (Polymer injection tube reinforced by glass fiber) sealed on the soil by an injection system using a cement grout in order to stabilize the tunnel face of sections (calotte, stross) and to oppose to the deformations and charges produced by soil movement on several directions.

These two reinforced methods; FIT and umbrella crown AGF, were used during the

excavation of Tunnel T4 of the East-West highway in Algeria. On this work, we present a comparison between the measurements of convergence and settlement set on site relative to these two reinforced methods.

It exists several approaches simplifying modeling of tunnel face reinforcement by bolting. We can mention the modeling by the amelioration of the soil resistance for which Indrarantna and Kaiser (1990) realized axisymmetric calculations considering a reinforced rock which respects plasticity criterion of Mohr-Coulomb where the resistance properties are improved.

On this work, we present the numerical modeling by the finites elements method of the two reinforced methods used on the tunnel, subject of our study, using PLAXIS 3Dcalculation code.

2. PRESENTATION OF THE STRUCTURE

The tunnel belongs to the T4 section 4 of the East-West Highway; it crosses Jebel El-Kantour at the north eastern of Constantine over a total length of 2500 m. The geotechnical investigation carried out on site indicates that the area is mainly composed of marls and argillites altered overlain by conglomerates and clays in the upper layers. The maximum cover of the tunnel is about 235m. The most critical section corresponds to the lowest cover which is 17m.

Figure 1. Plan view of Tunnel 4

Figure 2. Geological section of Tunnel T4

3. EXCAVATION METHOD OF TUNNEL T4

The excavation was started by divided sections according to NATM method (New Austrian Tunneling Method) till about 430m at the north portal. However, further to the change in the geological nature of the traversed soil, from marl to argillite little crumbly, which produce important deformations up to 90cm in some points, it was decided to use the method AGF "umbrella crown "as pre-support ahead of the tunnel face. And after about twenty meters of progress at the main tubes and sixty meters at MGS by this technique, it was noticed again an accelerating deformations inside the tunnel then a landslide occurred at the working face. The situation has become critical and required the use of other more advanced reinforcement solutions to solve the problem of instability and ensure safer working environment. For this, the project's technical group has opted for the use of the FIT method which is adopted for properties that have very poor, crumbly and heterogeneous characteristics.

4. AUSCULTATION SYSTEM

The auscultation system designed for monitoring the behavior of the tunnel during excavation and construction of temporary and final support is based on the installation of:

- Stations of convergence inside the tunnel positioned perpendicularly to the axis of the tunnel, every 5 or 10 m to measure the convergence and settlement.

- Drilling extensometer and deformation gauges.

- Extrusiometres installed at the tunnel face during the use of the method FIT.

- Settlement marks on the surface.

- Inclinometers and piezometers on surface. In this work, we particularly interested in convergence stations measurements, comparing the results of convergence and settlement of the AGF method by those corresponding to the FIT method.

5. AUSCULTATION MEASURMENT RESULTS

The curves shown in Figures 3 and 4 show the results of measurements of convergence and settlement made at the AMS (left middle to the south), after using the two methods of reinforcement AGF and FIT.

Figure 3: convergence and settlement curves at the station N°125

Figure 4: Convergence and settlement curves at the station N°151

Station No. 125: Measurements at this station show a persistence of deformations up to 15cm despite the use of the technique of pre-supporting AGF. After using the method FIT, a remarkable decrease in the deformation rate was registered.

Station No.151: This station is located in the zone where the FIT method was used. We note first of all a sudden deformation up to 15cm due to the landslide occurred at the front. After excavation progress about10m, we note there a good stability of the tunnel.

From the foregoing, it is clear that the FIT method has better stability of the tunnel than the AGF method.

6. NUMERICAL MODELING

6.1 Modeling Of FIT Method

6.1.1 Assumptions of calculation

For the numerical calculation, the finite element method was adopted using the code PLAXIS 3D. The soil was modeled by prismatical triangular elements at 15 knots, the temporary support of the tunnel by quadrilateral plate elements at 8 knots and rock bolts by quadrilateral bar elements at 8 knots. However, the modeling of the tunnel core reinforced by the FIT system has been developed according to the Indrarantna model (1988, 1990) by improving soil strength parameters, cohesion c and friction angle φ by the following relations:

$$\sin\varphi_{renf} = \frac{\beta(1+\sin\varphi)+2\sin\varphi}{\beta(1+\sin\varphi)+2} \tag{1}$$

$$c_{renf} = \frac{2c\cos\varphi(1-\sin\varphi_{renf})(1+\beta)}{2\cos\varphi_{renf}(1-\sin\varphi)}$$
(2)

With: $\beta = \pi d\lambda a / S_L S_T$

D	Bolt diameter	0,025 m
λ	Friction coefficient of	0,7
	Soil/bolt	
A	Tunnel radius	9,15 m
S_L	vertical spacing	1,5 m
a	TT ' / 1 '	2.5

S_T Horizontal spacing 2,5 m

The geometrical model used is shown in Figure 8 and Table 1 shows the physicalmechanical characteristics of the soil, temporary support and rock bolts used in the numerical calculation.

Table1.physical-mechanicalcharacteristics of materials

Material	Argillite	Temporary support	Rock bolt
Model	Morh- Coulomb	Elastic	Elastoplastic
$\gamma_{\rm d} ({\rm kN/m^3})$	19	-	-
γ_{sat} (kN/m^3)	21	-	-
C' (kN/m ²)	71	-	-
φ' (°)	5	-	-
ψ (°)	0	-	-
E (kN/m ²)	30 0000	-	-
Y	0,3	0,2	-
EA (kN/m)	-	8,814E+06	1,688E+05
EI (kN.m ²)	-	6,610E+04	-
d (m)	-	0,3	-

Modeling of excavation phasing has been designed according to the excavation steps executed really on site, where the excavation was done by divided sections with a gap of 3m between each section and an advancement pace of 0.75 m.

Figure 5: Representation of geometrical model of the structure

6.1.2. Calculation results

In order to show the effect of tunnel face reinforcement by FIT method on the stability of the structure, we have developed a calculation with reinforcement and another without reinforcement. For each calculation phase which represents an advancement pace in the excavation, the values of displacements (settlement and convergence) are taken equal to the values obtained at the upper part of the tunnel (calotte). The curves shown in Figure 6 allow to compare between the results of calculation (settlement and convergence) related to he reinforcement by the FIT method and those related to the ordinary excavation without reinforcement:

Figure 6: Settlement and convergence at the tunnel face according to the excavation with and without reinforcement by FIT method

6.1.3. Results Analysis

An analysis of the calculation results shows that the settlement of the calotte of the tunnel and convergence are less weak in the case of reinforcement by the FIT method compared to ordinary excavation without reinforcement.

We also note that the reinforcement by FIT method has more sensitive influence on the settlement (vertical movement) than on the convergence (movement along the X axis).

6.2 Modeling Of AGF Method

6.2.1 Assumptions of calculation

The same geometrical model adopted for modeling the FIT method was used for modeling the AGF method and the same physical-mechanical characteristics shown in Table 1.

For modeling the pre-supporting, it is suggested to activate the upper part of the temporary support (callote) that corresponds to the reinforced crown by the AGF system, 9 m length ahead of the face (AGF cycle length), before proceeding to the phasing of excavation, by modifying the characteristics of the supporting by the characteristics of pre-supporting estimated according to the metallic tubes and the injected silicate resin, as shown in Table 2.

Table 2. AGF pre-supporting characteristics

Material	Pre-supporting AGF
Model	Elastic
υ	0.2
EA (kN/m)	1 000 000
EI (kN.m ²)	20 833
d (m)	0.5

6.2.2. Calculation results

To be able to evaluate the influence of this pre-supporting technique, the same procedure as the FIT method was adopted by calculating with and without reinforcement.

The curves shown in Figure 7 show a comparison between the results of calculation (settlement and convergence) related to the reinforcement by AGF method and those related to the ordinary excavation without reinforcement:

Figure 7: Settlement and convergence at the tunnel face according to the excavation progress with and without reinforcement by AGF method.

6.2.3. Results analysis

The analysis of calculation results indicate that the settlement of the calotte and convergence are weak in the case of reinforcement by the AGF method compared to ordinary excavation without reinforcement.

We also note that the reinforcement by AGF method has more sensitive influence on the convergence (movement along the X axis) than on settlement (vertical displacements).

7. SYNTHESIS

Table 3 summarizes the results of numerical calculation in terms of influence and efficacy of the settlements and the convergence at the tunnel.

Table 3 : Summary of numerical calculation results

Method	Y1	Y2	х	Observation
FIT	++	++	-	Reinforcement by FIT method minimized the settlement at the tunnel. Less influence on the convergence.
AGF	+	+	++	- Reinforcement by AGF pre- supporting minimized settlement s and convergence at the tunnel

(-) : Non or less Influence.

(+) : Important Influence.

(++): Very important Influence.

8. CONCLUSIONS

Auscultation and observations on site during the excavation of the tunnel T4 of the East-West Highway in Algeria, showed the efficacy of the FIT method compared to the AGF method, which has led to the reduction of deformations inside the tunnel and put end to the phenomena of landslides at the tunnel face

The numerical calculation using the finite element method was allowed to highlight the efficacy of two methods of reinforcement FIT and AGF for reducing deformations inside the tunnel with a best efficacy of FIT method for settlement measurements.

Modeling of tunnel face bolting by improving the resistance of the soil according to the method of "Indrarantna and Kaiser (1990)" gave good results.

Other confrontations between numerical results and measurements made by other auscultation instruments installed on site (deformation gauges, drilling extensioneters, inclinometers to the surface settlement marks on the surface ... etc...) Can be done to study the influence of reinforcement of the tunnel face on other parameters.

D'autres confrontations entre les résultats numériques et les mesures effectuées par les autres instruments d'auscultation installées sur site, (jauges de déformation, extensomètres de forage, inclinomètres à la surface, repères de tassement à la surface...etc.) peuvent être effectuées pour étudier l'influence du renforcement du front de taille sur d'autres paramètres.

REFERENCES

- AL-HALLAK R. 1999. Etude expérimentale et numérique du renforcement de front de taille de tunnel en terrain meubles par boulonnage, Ecole nationale des ponts et chaussées, Paris.
- B. MEMIER. C. MADIER, M. PERRODO, Modélisation 3D du creusement d'un tunnel. Tunnels et ouvrages souterrains; 1995, VOL. 129, pp 160-164

- CHUNGSIK YOO, 2001. Finite-element analysis of tunnel face reinforced by longitudinal pipes, Department of civil and Environmental Engineering, Sungkyunkwan University, South Korea.
- D. DIAS, D. SUBRAIN, H. WONG, P. DUBOIS, R. KASTNER, 1998. Behaviour of a tunnel face reinforced by bolts: comparison between analytical – numerical models. 2nd International Symposium on Geotechnics of Hard Soils and soft Rocks, Naples.
- M. PANET, 1995. Le calcul des tunnels par la méthode convergence-confinement, Presses de l'école nationale des Ponts et Chaussées.
- H. WONG, V. TROMPILLE et D. DIAS, déplacement du front d'un tunnel renforcé par boulonnage prenant en compte le glissement boulon-terrain : approches analytique, numérique et données in situ. Revue française de géotechnique, n°89, pp13-28.
- de géotechnique, n°89, pp13-28.
 P. DUBOIS, D. DIAS, H. WONG, D. SUBRAIN, 2001. Modélisation du boulonnage du front de taille des tunnels et simulation par le calcul, Proc, 1st Int. Con. A. Caquot. Paris.
 P. LUNARDI, A. FOCARACCI, P. GIORGI et A. PAPACELLA, 1992. Tunnel face reinforcement
- P. LUNARDI, A. FOCARACCI, P. GIORGI et A. PAPACELLA, 1992. Tunnel face reinforcement in soft ground design and controls during excavation. Towards New words in tunneling, Rotterdam pp 897-908;
- P. LUNARDI, 2000. The design and construction of tunnels using the approach based on analysis of controlled deformation in rocks and soils, Lunardi Consulting Engineers, Milan.
 R.B.J BRINKGREVE et P.A. VERMEER, 2004.
- R.B.J BRINKGREVĚ et P.A. VERMEER, 2004. Plaxis Finite Element Code for Soil and Rock Analyses, Plaxis 3D Tunnel Version 2, BALKEMA.
- V. TROMPILLE, 2003. Etude expérimentale et théorique du comportement d'un tunnel renforcé par boulonnage frontal, Institut National des Sciences Appliquées de Lyon.

Avrupa Yakası 2. Kısım Atıksu Tünelleri İnşaatı Kazısında Kullanılan EPB-TBM Makinesi Kazı Parametreleri Analizi

Analysis of the EPB-TBM Excavation Parameters Used in the Second Region Waste Water Tunnels Construction of European Side of Istanbul

Ö. Acaroğlu İstanbul Teknik Üniveristesi, Maden Fakültesi, Maden Mühendisliği Bölümü, İstanbul E. Ekinci Soner Temel Mühendislik, İstanbul

ÖZET Dünyada ve ülkemizde tünellerin mekanik yöntemlerle kazısı hızla yaygınlaşmakta, zemin şartlarına uygun makina seçimi verimli bir kazının gerçekleştirilmesi açısından önemi artmaktadır. Bu çalışmada, Avrupa 2. Kısım Atıksu Tünelleri Projesi kapsamında Marmara Denizi, Haliç, Alibeyköy Barajı ve çevresi, Eyüp İlçesi ve Fatih İlçesinin atıksularını, İSKİ Yenikapı atık su arıtma tesisine getirecek tünellerin açılmasında kullanılan bir EPB-TBM (Tam Cepheli Tünel Acma) makinasının kazı parametrelerinin analizi yapılmıştır. Makina EPB modunda Güngören formasyonunda yeralan bir dereyatağından geçmiş bu sırada 7 ringden numune alınarak elek analizi yapılmıştır. Makinanın geçtiği zemin, tane boyutu dağılımı ve zemin şartlandırmasının türü elek analizi ile belirlenmiştir. Ardından makine Trakya formasyonuna girmiş ve çok çatlaklı, kırıklı kiltaşı kazılmaya başlanmıştır. Nispeten daha sert olan bu formasyonda makine TBM moduna geçirilmiş ve ardından kazı verimliliğini artırmak için kama uçlu keskilerin bazılarının yerine disk keskiler verlestirilmistir. Bu sürec sırasında makinaya ait tork, itme kuvveti, ilerleme hızı, kafa dönüş sayısı ve ilerleme parametrelerine ait datalar kullanılarak kazı parametreleri değerlendirilmiştir. Makinadan elde edilen datalar kazılan ortamı direkt ifade etmekte geçilen ortam hakkında faydalı bilgiler vermektedir.

ABSTRACT Mechanical excavation methods have become widespread in the world and our country and importance of the selection of proper machine is getting increase for achieving efficient excavation. In this study, the excavation parameters of an EPB-TBM machine used in tunnel project which is purpose of collecting the waste water from Eyüp to Yenikapı in the ISKI Yenikapı Waste Water Plant were analyzed. During the machine passing under a river bed in the Güngören formation, seven ground samples were collected and sieve analyses were made. The ground of continuing, particle size distribution and ground conditioning type were examined by using sieve analysis. After the Güngören formation EPB-TBM was entered in the Trakya Formation and started excavation fractured and jointed claystone. During the excavation in this relatively harder formation, the machine was transformed from EPB to TBM mode, and then some of the wedge cutters were placed with disc cutters for increasing the efficiency of the excavation. During this period, analysis of the excavation parameters were made using the torque, thrust force and those penetration indexes, advance and penetration values rate. This study shows that data obtained from machine gives useful information about formation passing.

1 GİRİŞ

Son yıllardaki teknolojik gelişmelere paralel olarak inşaat ve madencilik sektörlerinde yeraltı yapılarının önemi gün geçtikçe artmaktadır. Yeraltı yapılarının kazısında özellikle de yerleşim merkezleri ve büyük tünellerde mekanik kazı yöntemleri son 30-40 yıl içerisinde hızla yaygınlaşmıştır. Özellikle mekanik kazı da kullanılan makinalardan biri olan tam cepheli tünel açma makinaları (TBM) ile tünel açmak, uygun kayaç şartlarında uzun tünellerin açılmasında en ekonomik yöntem olmuştur. Kayaç şartlarının uygun olduğu durumlarda, TBM yöntemi delme ve patlatma yöntemine göre 2–4 kat hızlı olabilmektedir (Barton 1999, Kahraman, 2007). Verimli kazının yanında hem çevreye ve yer üstünde yapılara zarar vermeyécek hem de zemin şartlarına uygun olacak şekilde makina seçimi önem taşımaktadır. İlk yatırım maliyetleri yüksek olsa da tam cepheli tünel açma makinaları (TBM) tasman gibi istenilmeyen yeraltı hareketlerini önleme kabiliyeti, daha sessiz, titreşimsiz ve hızlı çalışması nedeniyle günümüzde tercih edilen kazı makineleri haline gelmiştir (Çınar ve Feridunoğlu, 2002, Tunçdemir, 1998, Acaroglu ve Bayram, 2010).

Bu tünel açma makinalarının çalışmaları prensip olarak aynı fakat kullanılacak kafa tasarımları ve keski tipleri, makinayı dengeleme sistemleri, tahkimat sistemleri, çıkarılan pasayı taşıma sistemleri çeşitli yönlerden sert, orta sert, yumuşak ve akıcı formasyonlar için í farklılıklar jeolojik göstermektedir. Sonuçta yeraltı açıklığı boyunca geçilecek/kazılacak jeolojik formasyonun önceden bilinmesi kullanılacak tünel açma makinasının seçiminde, en önemli faktörlerden biri olmuştur olmustur (Tunçdemir, 1998). Tünel açma makinelerinin bilinçli seçilmesi ve kullanımı; hızlı, ekonomik ve verimli tünel ve galeri açmanın en temel unsuru olup, bu makinelerinin seçimi ve performans tahmini, mekanize tünel açma işinin en önemli konularından birini oluşturmaktadır.

Bu çalışmada İSKİ (İstanbul Su ve Kanalizasyon İdaresi)'nin Avrupa Yakası 2. Kısım atıksu tünelleri inşaatı kapsamında gerçekleştirdiği projede kullanılan, bir TBM çeşidi olan "arazi basıncı dengeleme" prensibiyle çalışan EPB (Earth Pressure Balance) makinesinin kazı parametreleri incelenmiştir.

1.1 Arazi Basıncı Dengeleme Prensibine Göre Çalışan Tünel Açma Makinaları (EPB TBM'ler)

1.1.1 EPB Makinaların Tarihsel Gelişimi

Yapıskan olmayan ve veraltı su seviyesi altında bulunan zeminlerde ilerleme sırasında stabilite kaybı kaçınılmazdır. Genellikle bu gibi alanlarda ve kendini kısa süreli bile tutamayan kayaçların kazısında Arazi Basıncı Dengeleme Makinesi- EPB (Earth Pressure Balance) tipte tünel açma makinalarından faydalanılmaktadır (Friant ve Özdemir,1994). EPB makinaların ilk örneklerinden sayılabilecek olan makine Brunei'nin tasarımlarının 1864'de dairevi şilt patenti alan Peter Parlow tarafından gelistirilmistir. Baskı bu sildin içine verlestirilen astar segmentlerin itilmesi suretiyle olusturulmaktadır. Ön tarafında çamur (pasa) akışını ve uzaklaştırılışını temin edecek açıklık söz konusudur. Bu şildin bir benzeri olan ve EPB'nin ilk temsillerinden biri sayılan bir makine ile 1869'da Times nehri bir yılda geçilmiştir. EPB makineler kavram olarak esasta Avrupa'dan çıkmışsa da, asıl gelişmesini Japonya'da yapmıştır. Ancak tamanlamıyla Arazi basıncını dengeleme esasına göre EPB çalışan makinaları ilk olarak Japonya'da 1960-70'li yıllarda görülmeye başlamıştır. Japonlar, 1960'lardan 1980'lerekadar olan süreçte, bu tür makinelerden yüzlercesini üretmiştir (Maidl, 1996 ve Tunçdemir, 1998 ve Çınar ve Feridunoğlu, 2002).

1.1.2 EPB Tünel Açma Makinalarının Çalışma Prensipleri

Bu makinelerin çalışma prensibi su gelirini veya arazi akmasını kontrol etmek amacıyla ayna boşluğunun kapalı bir hacim haline getirilerek basınç altında tutulmasıdır. Böylece arazi ve içindeki su basıncı etkisiyle, kesme kafası ve ayna boşluğunda doğal bir basıncın oluşmasına imkan verilmektedir (Friant, 1994). Bu kazılan malzemenin kesici kafa haznesini doldurması ve tüm yüzeyi desteklemesiyle destekleme sağlanabilmektedir. Bu basıncının tünel kalınlığındaki doğal arazi basincini karsılayacak bir değerde ayarlanması gerekir. EPB makinalar 10 bara (1 MPa) kadar ulaşan basınç altında çalışabilecek şekilde yapılabilmektedirler. En iyi çalışma koşulları arazi nemlilik oranının % 10-15 veya daha az olduğu durumlardır. Ayrıca son dönemlerde geliştirilen EPB tünel açma makinaları çok sert kayaclardan cok yumusak olanlarına kadar. değisik kayac ve zemin formasyonlarında kullanılmak üzere de tasarımlandırılmaktadırlar. Çalışma şeklinin basit olması ve uygulama alanlarının oldukca genis olmasından dolayı, son villarda camur makinelerinin (slurry shield) yerini almaktadırlar (Tunçdemir, 1998, Çınar ve Feridunoğlu, 2002). EPB tünel açma makinaları genellikle çok amaçlı kullanılabilecek şekilde imal edilmek, istenildiği taktirde tek veya çift şiltli olarak kullanılabilmelerinin yanı sıra kazı yapılan arazinin durumuna bağlı olarak kapalı altında) veva acık (atmosfer (basinc basıncında) çalışabilecek duruma da kolayca getirilebilmektedirler. Örneğin derin bir deniz tabanın altında çalışan bir EPB tipte bir tünel açma makinası, basınçlı bir damar veya fay zonuna rastlamadığı sürece, çift şiltli, açık bir konumda çalışabilmektedir. Gerektiğinde de çok çabuk olarak kapalı konuma getirilerek ve gerçek bir EPB tünel acma makinası olarak kazı yapılabilmektedir (Tuncdemir, 1998). EPB makinasının kazı anında çalışma aşamaları da şu şekilde gerçekleşmektedir: Şekil 1'de elemanları görülen bir EPB makinasında öncelikle kesici kafanın döndürme motorları ile döndürülmesi ve kesici kafava itme silindirleri ile araziyi destekleyecek kadar ya da biraz daha fazla kuvvet verilmesiyle akıcı alüvyal zemin kazı haznesine dolmaya başlar. Kazı haznesi tamamen dolduktan

sonra istenilen destekleme ortamı sağlanmış olur ve kazılan malzeme vida konveyör yardımıyla normal basınçtaki bölgeye alınmaya başlanır. Vida konveyörün en önemli görevi aynada oluşturulan basıncın kademeli olarak azaltılması ve normal basınç seviyesine düşürerek düzenli bir malzeme çıkışının sağlanmasıdır (Şekil 2). Vida konveyörün çıkış kapısından bant konveyöre boşalan malzeme kuyruk bölümünde bekleyen vagonlara ulaşır ve buradan da kuyu ağzına gönderilir (Özdemir, 1992 ve Tunçdemir, 1998).

Şekil 1. Arazi Basıncı Destekleme Şilti Kesit Görünümü ve Elemanları (Özdemir, 1992 ve Tunçdemir, 1998)

Şekil 2. Bir EPB Makinasında Kazı Haznesindeki Akış Oluşumu (Maidl, 1996)

Bazı durumlarda kazı sırasında istenilen miktarda malzeme geliri olmayabilmektedir. Diğer bir deyişle malzeme yerine su geliyor olması veya zeminin fazlasıyla kuru olması nedenivle vida konvevörden malzeme geçişinin mümkün olmadığı hallerle karşılaşılabilmektedir. Bu gibi durumlarda kazı aynasına doğru, malzemeyi daha kaygan yapan ve böylece su geçişini engelleyen bir katkı maddesi enjekte edilmesi gerekebilir. Kazı ilerlerken şildin tam arkasına taşıyıcı raylarla getirilen beton segmentler erektörler vardımıyla verlestirilirler. Bu arada segmentler ve zemin arasında kalan -şilt kalınlığı kadar olan- boşluklar ya da aşırı sökümler yüzünden oluşan boşluklar şilt üzerinden yapılan bentonit enjeksiyonlarıyla doldurularak kapatılırlar. EPB tipte tünel acma makinasının çalışma kosulları özellikleri açısından ele formasyon alındığında dikkat edilmesi gereken bazı önemli hususlar vardır. İlk olarak, tahkimat sisteminin boyutlandırılması, naklivat sisteminin belirlenmesi, makina güç donanımlarının hangi sınırlar arasında değişeceğinin önceden tahmini açısından akıcı ve yapıskan olmayan ortamlarda açılacak bir tünele göre uygun bir EPB tünel açma makinasının seçimi için, kazı aynasında oluşan arazi ve su basıncının çok ivi belirlenerek toplam teorik destekleme basıncının tahmini şarttır. İkinci olarak bir EPB tünel açma makinasında değişken işletme parametreleri kazıyı güvenli olarak devam ettirecek şekilde ayarlanmalıdır. Örneğin avnaya uvgulanan itme kuvveti (thrust), veryüzünde herhangi bir tasman ya da kabarma olmaması için, sadece ayna basıncını karşılayacak miktarda ya da biraz daha fazla uygulanmalıdır. Ayrıca Verimli bir enjeksiyon işlemi gerçekleştirmek için katkı maddeleri kazı aynasına doğru enjekte edilmelidirler. Eğer vida konveyörde çok aşınma oluyor ve malzeme geliri istenildiği gibi sağlanamıyorsa vida konveyörden de enjeksiyon yapılması gerekebilmektedir. Son

olarak da kazılan malzemenin gerektiği gibi taşınabilmesi için parça boyutunun ortalama olarak ne kadar olduğu bilinmeli ve başarılı bir EPB ile tünel kazı isinin gerçekleştirilebilmesi için, makina ilerleme hızını ayarlamak için kesici kafa haznesinden akışın çok iyi kontrol edilmesi ve aynı zamanda aynadan su gelirinin engellenmesi konularına dikkat edilmelidir.

2 AVRUPA YAKASI 2. KISIM ATIKSU TÜNELİ İNŞAASI

İlci-Özgün firmalarının ortaklığıyla İstanbul Su ve Kanalizasyon İdaresi adına yürütülen projede amaclanan Avrupa Yakası 2. Kısım Atıksu Tüneli'nin kazılması ve proje içinde bulunan diğer yapıların inşa edilmesidir. Proje kapsamında kazılması amaçlanan atıksu tüneli sayesinde Marmara Denizi, Haliç, Alibeyköy Barajı ve çevresi, Eyüp İlçesi ve Fatih İlçesinin çevre kirliliğine neden olan atıksuları toplanarak İSKİ'ye ait Yenikapı Atıksu Arıtma Tesisi'ne getirilecektir. Kazılan tünellerle taşınacak atıksular, tünel bitiminde Yenikapı Atıksu Arıtma Tesisi'ne, tesisin kaba ızgarasından gerekli ve yapacak arıtma giris proseslerinden geçirilecektir. Bu prosesler sonucu zararsız hale getirilecek olan atıksular, sahil şeridinden 300 metre açıkta Marmara Denizi'nin dip akıntılarına verilecektir.

2.1 Jeoloji

Tünel güzergâhı boyunca geçilen zemin ve kayaların jeolojik ve jeoteknik özelliklerinin tespiti amacıyla, 21 noktada kuyu derinlikleri 15,50 ile 87,00 m arasında değişen, toplam 844,20 m mekanik sondaj yapılmıştır. Güney Haliç Atıksu Tünel Kollektör Güzergâhı'nda stratigrafik olarak temelini Kocaeli Paleozoyik İstifinin en üst birimi olan ve genelde türbitidik kumtaşıçakıltaşı aratabakalı şeyllerden oluşan ve "Trakya Formasyonu" olarak adlanmış olan Alt Karbonifer yaşlı istif oluşturur. Güzergâh boyunca yapılmış sondajlarda bu kesimde istifin temel litolojisi olan gri-koyu gri renkli laminalı şeyller arasında türbitidik kumtaşı ara tabakalarının yaygın olduğu ve hatta bazı kesimlerde istifi kumtaslarının olusturduğu şeyllerin ise ara katkı şeklinde oldukları gözlenmiştir. Güzergâh boyunca bazı kesimler hemen hemen tümüyle kumtaşlarından yapılmıştır. Bunlar derindenizel yelpaze üstü lobları olarak yorumlanır. Formasyonun Paleozoyik İstifi içindeki diğer birimlerle olan alt sınırı güzergâh boyunca gözlenmemiştir. Üstten ise, Güngören ve Kusdili formasyonlarıyla açık uyumsuz olarak örtülür. Önceki araştırmalara göre Alt Karbonifer olarak yaşlandırılmış olan formasyonun 1000 m üzerinde kalınlığı vardır ve genel geometrisi seklindedir. Güzergâh Boyunca örtii Yenikapı'ya doğru Üst Miyosen sedimenter devresinin ikinci birimi olan Güngören Formasyonu Trakya Formasyonu'nu açılı uyumsuz olarak örter. Formasyon, Trakya Formasyonu'nun ileri derecede ayrışmış kesimi üzerinde yeşilimsi kahve-yeşilimsi gri renkli laminalı killerle başlar ve yüzeye kadar benzer şekilde devam eder. Formasyon icinde Vatan Caddesi güney kenarında sondajlardan izlendiği gibi bir kum merceği mevcuttur. Bu kum merceği 9,5-9,7 m görünür kalınlıklı olup yerel olarak ince çakıllı ve killidir. Genelde siltli ve mikalı olan kum merceği orta sıkı, sıkı ve çok sıkı özelliklidir. Bu kum merceği altında formasyonun temel litolojisi olan killer konsolide, karbonatlı, mikalı ve demirli minerallerin okside olmasıyla boyanmıs olarak izlenmektedir. Güzergâh boyunca formasyonun alt kesiminden aşınma sonrası kalan 8-38 m lik kesimi gözlenmiştir. Güzergâh üzerinde kuzeyde (Eyüp çevresi) Trakva, günevde ise (Yenikapı), Güngören formasyonları üzerinde uyumsuz bir istif izlenmektedir. Bu istif "Geç Kuvaterner olarak vaşlandırılmış ve "Kuşdili Formasyonu" olarak ayırtlanmış ve adlanmıştır. Formasyon, kuzey kesimde

çoğunlukla yeşilimsi koyu gri renkli siltli, mikalı ve yoğun lamelli branş kavkılı gevşek killerden yapılmıştır. Güneyde (Yenikapı çevresinde) üst kesimde çakıllı ve kavkılı kumlardan altta ise kavkılı killerden yapılmıştır. Stratigrafik olarak güzergâh boyunca kesilen istifin en üstünde yerel olarak inşaat ve hafriyat molozlarından yapılmış dolgular ve köşeli çakıl-kum-kilden yapılmış yamaç molozları mevcuttur (Oktay ve İlkışık, 2009).

3 PROJEDE KULLANILAN EPB-TBM KAZI PARAMETRELERİ ANALİZİ

Avrupa Yakası 2. Kısım atıksu tünelleri inşaasında kullanılan EPB TBM makinesi Herrenknecht markası 1070-M modelidir. Makinanın kesici kafa çapı 4560 mm olup, makinanın toplam uzunluğu 12,7 m'dir. Kesici kafası toplam 400 kW gücünde 2 adet elektrik motoruyla döndürülmekte ve sağladığı tork bunların miktarı 2,75 devir/dak için 2307 kNm olabilmektedir. 16 adet itme silindiri bulunmakta olup, toplam uygulabilen itme kuvveti 16625 kN kadardır. 12,3 m uzunluğunda helezon konveyöre sahip olup, hızı doluyken dakikada 22 devire çıkabilmektedir (Herrenknecht, 2006).

Bu EPB-TBM'in kazı parametrelerinin incelenmesi Ekim-Aralık 2010 tarihleri arasında gerçekleştirilmiştir (Ekinci, 2011) bu sırada eşit miktarlarda, vida ve konveyörünün hemen arkasındaki banttan 1461, 1481, 1520, 1560, 1584, 1616, 1697 ringlerinden alınan 7 adet numune yaş olarak elenmiş ve elek analizleri yapılmıştır. Makina bu çalışma boyunca hem kayaç ortamında hemde alüvyonlu bölgede kazı yapmıştır. Gerek zemin numunelerinin alındığı gerekse kayaç ortamında kazı yaptığı sırada kazı parametreleri olarak bilinen makinanın uygulamış olduğu itme kuvveti, tork ve bu iki parametreve ait penetrasyon indeksi değerleri ile makina hızını ifade eden ilerleme miktarı verileri incelenmiş ve analiz edilmiştir (Ekinci, 2011).

3.1 Elek Analizleri

Dereyatağı altındaki zeminde EPR modunda yapılan kazıyı değerlendirmek için bu çalışmada 64 mm den başlayıp 38 mikron boyutuna kadar eleme yapılmıştır. Eşit miktarlarda, vida konveyörünün hemen arkasındaki banttan 1461, 1481, 1520, 1560, 1584, 1616, 1697 ringlerinden alınan 7 adet numune İstanbul Teknik Üniversitesi Cevher Zenginleştirme Hazırlama ve Pilot Tesisi'nde yaş olarak elenmiştir. Elek üstü ve elek altı malzemeler kurutmaya bırakılıp, nemi alınmış ve tamamen kuru olarak tartılmıştır. Tartım sonuçlarına dayalı olarak kümülatif elek altı eğrileri oluşturulmuştur. Numune alınan ring aralığı (1461-1697) açılmakta olan tünel uzunluğunun 1753,2 m ile 2036,4 m leri arasında bulunmaktadır. Numunelerin alındığı bu kısım dere yatağına denk gelmektedir. Bu kısmın jeolojisinde kum, sarı renkli kumtaşı, kil ve kiltaşı ve aşırı su gelirinin olduğu belirtilmiş ve elek analizinden de bu durum görülmüştür. Örnek olarak Şekil 3.'de 1616 nolu ringten alınan numunenin kümülatif elekaltı eğrisi verilmektedir.

Diğer ringlerden alınan numunelerin elekaltı eğrileri de benzer karakterde çıkmıştır. eğrilerine Kümülatif elekaltı göre işlenebilirliği sağlamak ve permabiliteyi şartlandırma azaltmak icin yapılması İşletmede de bu amaçla gerekmektedir. polimer ve köpük karışımından oluşan solüsyon kullanılarak şartlandırma işlemi yapılmıştır. Su geliri durumuna göre % 0,2-2 aralığında değişen oranlarda polimer ve % 2-5 aralığında değişen oranlarda köpük karıştırılarak arın ve kafa arkasındaki başınc dengeleme bölümüne verilmiştir. Makinanın dereyatağı altından geçtiği bu bölgede (1461-1697 arası ringlerde) yer basıncı değerleri 1-1,3 bar dolaylarına çıkmış, daha sonra daha sert formasyona girildiğinden basınç değerleri 0,25-0,5 bar civarına düşmüştür. Şekil 4'den görüldüğü üzere 1461 ve 1481 nolu ringler zeminde geçilmesine rağmen basınç değerlerinin

düşük çıkması burada rastlanan sert kumtaşı merceğinin varlığı ile açıklanabilir (Şekil 4). Grafikte ilk eksen ring numaralarını, altındaki eksen ise o ring numarasına karşılık gelen tünel uzunluğunu metre cinsinden ifade etmektedir.

Şekil 3. 1616 Numaralı Kazının Kümülatif Elek Altı Grafiği

Şekil 4. Yer basıncı Değerlerinin Tünel Ekseni Boyunca Değişimi

3.2 Torka Ait Değerlendirmeler

Çalışmanın yapıldığı Ekim ve Aralık 2010 tarihleri arasında makinenin kesici kafasının döndürülerek kayacın kazılmasını sağlayan tork değerleri Şekil 5'de verilmiştir. Grafiğe bakıldığında iki farklı bölge görülmektedir. I. Bölgede makina EPB modunda; II. bölgede TBM modununda çalıştırılmıştır. EPB modunda iken tork değerleri 1200-1700 kNm arasında değişirken TBM modunda 700-1300 kNm'e kadar düşmüştür.

Şekil 5. Tork Değerlerinin Tünel Ekseni Boyunca Değişimi

Şekil 6'dan Tork için penetrasyon indeksi yani 1 mm ilerleme yapabilmek için gerekli tork değerine bakıldığında genel olarak önce yüksek değerler elde edilirken, sonra ani düşüş ve tekrar hafif bir yükselme gözlenebilir. Bu nedenle grafik, daha sağlıklı yorum yapılabilmesi için üç bölüme ayrılmıştır.

Tünel boyunca 1461-1697 (1753- 2036 metre) ringleri boyunca alınan numunelerde vapılan elek analizi sonuçlarına ve jeolojik bilgilere göre dere yatağı altından geçilmiş olup, tork değerlerinin benzer çıkması beklenmiştir. Bu aralık grafikte I. ve II. bölgelerine denk gelmiştir. Fakat bu iki bölge arasındaki fark, grafikten de görülebileceği gibi oldukça fazladır. I. bölge 1520 ringleri yani 1461arasında penetrasyon indeksi değerleri II. bölgenin 1697 ringleri arasındaki yani 1580değerlerin 4-5 katı kadardır. Bu durum: Makinenin gevşek dereyatağı zemininden geçmesine rağmen, numune alınan 1461, 1481 ve 1520 ringlerinde bu gevşek zeminin içerisinde kumtaşı merceği bulunmaktadır.

Kumtaşı merceğinden dolayı kazı işleminin zorlaştığı, bir ring kazısının 2-2,5 saat kadar sürdüğü ve 1 mm başına denk gelen tork değerinin 350-450 kNm'ye kadar çıktığı söylenebilir. 1520. ringden sonra kumtası geçilmiş ve tork değeri 50-100 kNm civarına düşmüştür. Şekil 5'de 3. Bölge olarak adlandırılan 1800 (2160 m) ringinden hafif yükselme ise zeminin sonraki değişmesiyle açıklanabilmektedir. Buralarda Trakya formasyonuna girilmiş ve çok çatlaklı. kırıklı kiltası kazılmava başlanmıştır. Bu da 1 mm başına düşen tork değerlerinin 100-150 kNm'ye çıkmasına Daha sert formasyona neden olmuştur. girilmesine rağmen tork değerinin çok yükselmemesinin nedeni makinenin 1810. ring civarında (2172 m) EPB modundan TBM moduna geçirilmesine ve kesici kafadaki kama uçlu keskilerin disk keskilerle değiştirilmesine ve nispeten kiltaşı gibi daha az sert olan ortamda yapılan kazıya bağlanmıştır.

Şekil 6. Tork'a Bağlı Penetrasyon İndeksi

3.3 İtme Kuvveti

Makine tarafından uygulanan itme kuvveti makine kesici kafasının arına batması için kullanılır. Şekil 7'den görüleceği üzere I. bölgede makine EPB modundayken yumuşak zeminde kazı yapmasına rağmen itme kuvveti değerleri II. bölgede yani kırıklı çatlaklı kayaç ortamındaki (Trakya ormasyonu) değerlere nazaran daha yüksek çıkmıştır. Kazılan formasyon hakkında daha

1319

fazla bilgi veren itme kuvveti-penetrasyon grafiğinde ise I. bölge 300-800 kN , II. bölgede 40-140 kN, III. bölgede ise ikinci bölgeye yakın değerler alınmıştır (Şekil 8). I. bölgede zeminde kazı yapılmasına rağmen II. bölgeye göre daha yüksek değerlerin çıkmasının nedeni zemindeki kumtaşının varlığıdır. III. Bölgede kayaç ortamına geçmesine rağmen değerlerin tekrar yükselmemesinin nedeni kama uçlu keskilerin disk keskilerle değiştirilmesiyle daha verimli kazıya geçilmesi ve kazı ortamının değişmesiyle ile açıklanabilir.

Şekil 7. İtme Kuvvetinin Tünel Ekseni Boyunca Değişimi

Şekil 8. İtme Kuvvetine ait Penetrasyon İndeksinin Değişimi

3.4 Kafa Tur Sayısı

Bir dakikadaki kafa dönüş sayısı (rpm) 1461 ile 1697 ringleri arasında genellikle 2,5 civarında sabit tutulmuştur. Daha sonra makinanın Trakya formasyonuna girmesi ile birlikte yükselişe geçmiş ve 3 ile 4,5 arasında formasyonun sertleşmesine paralel olarak yükselmiştir (Şekil 9).

Şekil 9. Kafa tur sayısının değişimi

3.5 İlerleme Hızı

Makinanın bir dakikada mm olarak ilerleme miktarı Şekil 10'da verilmiştir. Burada da diğer makine parametreleriyle uyumlu olarak üç bölge söz konusudur. Makine EPB modunda çalıştığında ilerleme hızının zeminde çalışmasından dolavı yüksek olması beklenir. Bununla uyumlu olarak II. bölgede yüksek değerler elde edilmiş, ilerleme hızı 35-60 mm/dak arasında elde edilmiştir. I. bölgede zayıf olmasına rağmen kumtaşının zeminde varlığından dolayı hız 10 mm/dak'ya düşmüştür. III bölgede kazı daha sağlam bir zeminde olduğu için II. bölgede kazı udıla sagıalı bil çıkmamış ama I bölgeden daha yüksek çıkmış, 25-35 mm/dak arasında değişmiştir. III. Bölgede yükselişe kayaç kazılabilirlik farkının neden olabileceği gibi disk keskinin verimliliğinin de etkisi olabileceğinin dikkate alınması gerekmektedir.

Şekil 10. İlerleme Hızının Tünel Ekseni Boyunca Değişimi

4 SONUÇLAR VE DEĞERLENDİRMELER

Bu çalışmada, Avrupa 2. Kısım Atıksu Tünelleri Projesi kapsamında Marmara Denizi, Haliç, Alibeyköy Barajı ve çevresi, Eyüp İlçesi ve Fatih İlçesinin çevre kırliliğine neden olan atık sularını, İSKİ Yenikapı Atıksu Arıtma Tesisi'ne getirecek tünellerin açılmasında kullanılan bir EPB-TBM makinasının kazı parametrelerinin analizi Ekim-Aralık 2010 tarihleri arasında yapılmıştır.

Tünel kazısı sırasında, makine 1461-1697 ringleri (1753 m- 2036 m) arasında kazı yaparken Güngören formasyonunda bir dereyatağı altından geçmiştir. Bu sırada 7 ringden numune alınarak elek analizi yapılmıştır. Elde edilen kümülatif elekaltı eğrileri çakıl, kum, silt ağırlıklı killi bölgeden geçildiğini; işlenebilirliği artırmak, permeabiliteyi ve torku azaltmak için yapılması şartlandırma gerektiğini Îşletmede göstermiştir. ďe būnu gerçekleştirmek için, su geliri ve zeminin niteliğine bakılarak %0,2-2 oranında polimer, karıştırılarak %2-5 oranında köpükle şartlandırma Yaklaşık 18 yapıldığı 1800. gözlenmiştir. ringler (2160 makine civarında m) Trakya formasyonuna girmiştir. Burada çok çatlaklı, kırıklı kiltaşı kazılmaya başlanmış, nispeten daha sert olan bu formasyonda makine TBM moduna geçirilmiş ve ardından kazı verimliliğini artırmak için kama uçlu keskilerin bazılarının yerine disk keskiler yerleştirilmiştir.

Bu süreç sırasında makinaya ait tork, itme kuvveti, ilerleme hızı, kafa dönüş sayısı

parametreleri dataları kullanılarak kazı değerlendirilmiştir. Kafanın bir dönüşteki ilerleme miktarı olarak tanımlanan değerleri ve bu değerler hesaplanan tork ve itme penetrasyon kullanılarak kuvvetine ait penetrasyon indekslerine kuvvetne alt penetrasyon indeksierine bakılarak kazı analizi yapılmıştır. Datalar kazılan ortamı direkt ifade etmektedir. Nispeten zayıf ortam olan zeminde gerçekleştirilen kazıda, tork ve itme kuvveti değerlerine ait yükselmelerin nedeni sırasıyla basınçlı odadaki malzemenin döndűrülmesi ve zemin ile makine arasındaki sürtünme seklinde yorumlanmıştır. Torka ait penétrasyon yorumlanmıştır. Torka alt penetrasyon indekslerine yani, 1 mm ilerlemeye karşı harcanacak tork değerlerine baktığımızda farklı üç bölgenin olduğu belirlenmiştir. Normalde makine zayıf zeminde ilerleme yaparken torka ait penetrasyon indeksinin daba düsük altırası daha düşük çıkması beklenmektedir. Bu çalışmada da bu durum gözlenmiş, fakat zeminde olmasına rağmen 1461-1520 ringleri arasında yüksek değerler olduğu belirlenmiştir. Bu ise zeminde bulunan kumtaşı merceğinin varlığı ile açıklanmaktadır. Bu kumtaşı geçilince bu değerler düşerken, daha sağlam formasyon olan Trakya formasyonuna girince tekrar yükselmiştir. İtme kuvvetine ait penetrasyon indeksi değerlerinde ise kumtaşının etkisi daha fazla gözlenmiştir. Zayıf zemin ile sağlam zemin arasındaki fark ise çok yüksek çıkmamıştır. Burada keskilerin değiştirilmesi étkisinin de gözönüne alınması gerekmektedir.

Makinanın ilerlemesine ait yorumlar kafa dönüş sayısı ve ilerleme hızı değerlerine bakılarak yapılmıştır. Bu verilerin, geçilen formasyon ve tork-itme kuvvetlerine ait değerlerle uyumlu olduğu gözlenmiştir. Kafa tur sayısı, zayıf formasyonlarda sabit ve düşük tutulurken, formasyon sağlamlaşınca artırılmıştır. İlerleme hızına (mm/dak) değerlerine baktığımızda yine üç farklı ortamdan geçildiği gözlenmiştir. Zayıf zemin fakat kumtaşı varlığı hız değerlerini düşürürken, kumtaşı geçildikten sonra oldukça yüksek değerler elde edilmiş, ardından daha sağlam formasyona girilmesinden dolayı düşüş gözlenmiştir (Ekinci, 2011).

Teşekkür

Bu çalışmanın sonuçları İTÜ Maden Mühendisliği Bölümü'nde Ekim-Aralık 2010 tarihleri arasında Ömür Acaroğlu Ergün'ün danışmanlığı'nda yapılan Emre Ekinci'nin bitirme tezine dayanmaktadır. Çalışmanın gerçekleşmesinde sağladıkları çalışma ortamı, numuneler ve makine verilerinin elde edilmesinde gösterdikleri ilgi ve alakadan ötürü projesinin yürütücüsü İlci-Özgün ortaklığına teşekkür ederiz.

KAYNAKLAR

- Acaroglu, O., Bayram, O. Kadıköy-Kozyatağı Arası Tünel Kazısında Kullanılan EPB TünelAçma Makinaları Kazı Parametreleri Analizi, The 22nd International Mining Congress of Turkey 11-13 May, 2011, Ankara.
- Barton, N., 1999. "TBM performance estimation in rock using QTBM". Tunnels and Tunnelling International, 31, s. 30-34.
- Çınar, M., Feridunoğlu, O. C. 2002. "Tünel Açma Makineleri (TBM)". Ulaşımda Yeraltı Kazıları 1. Sempozyumu Bildiriler Kitabı (Genişletilmiş 2. Baskı). s. 343-367, İstanbul.
- Ekinci, E., 2011 Ocak, Bitirme Tezi, "Avrupa Yakası 2. Kısım Atıksu Tünelleri İnşaatı Yenikapı Tüneli Kazısında Kullanılan EPB-TBM Makinesi Kazı Parametreleri Analizi, İTÜ Maden Mühendisliği.
- Friant, J.E. ve Özdemir, L., 1994. "Tünel Açma Teknolojisi –Bugün ve Yarın-, Tünel ve Galeri Açma Meslek İçi Semineri Notları, Ş. Eskikaya (ed.), İstanbul.
- Herrenknecht, AG, 2006. Operating Manual M-1070M EPB4000AH Tunnelling Equipment
- Kahraman, S. 2007. "Tam Cepheli Tünel Açma Makineleri'nin (TBM) Tarihsel Değerlendirmesi". Ulaşımda Yeraltı Kazıları 2. Sempozyumu Bildiriler Kitabı, s. 57-62, İstanbul.
- Maidl, B., Herrenknecht, M., Anheuser, L., 1996. "Mechanised Shield Tunnelling". Ernst und Sohn, s.428, Berlin.
- Oktay, F.Y., İlkışık, O.M., 2009. "İSKİ Güney Haliç II Atıksu Tüneli Jeolojik/Jeoteknik Etüd Raporu", Anadolu Yerbilimleri, No. 766-İ, s. 3.
- Özdemir, L., 1992. "Mechanical Excavation Techniques in Underground Construction". Short Course Notebook, Volume1, p.427.
- Tumaç, D., 2010. Doktora Tezi, İTÜ Fen Bilimleri Enstitüsü, İstanbul.
- Tunçdemir, H. 1998. "Arazi Basıncının Dengelenmesi Esasına Göre Çalışan Tam Cephe Tünel Açma Makinelerinin Kazı Performansını Etkileyen Zemin Özellikleri ve İzmir Metrosu Örneği", 4.Ulusal Kaya Mekaniği Sempozyumu, 22-23 Ekim, Zonguldak.

Delici Makinelerde Birim Maliyetleri Düşürmek İçin Sarf Malzemesi Seçiminin Önemi

Importance of the Selection of Drilling Tool for Decreasing Unit Costs In Hyraulic Rock Drilling Machines

E.A.Kantarcı, B.Ergener Atlas Copco Makinaları İmalat A Ş, Tuzla, Istanbul

ÖZET: Delme ve patlatma, kaya kazısı iş alanında hem madencilik hem de inşaat uygulamalarında önemli yer tutmaktadır. Delme maliyetlerini etkileyen önemli faktörler de makine, yakıt sarfiyatı ve delici sarf malzeme kullanımıdır. Yakıt sarfiyatı, yüksek petrol fiyatları nedeniyle maliyet tablolarında dikkat çekmektedir.

Makine endüstrisinde reform yaratacak yenilikleri içinde barındıran Atlas Copco "Smart" (Akıllı) serisi hidrolik delici ekipmanları geliştirilmiştir. Yakıt tasarrufunun yanı sıra delici sarf malzemeleri de doğru seçim yapıldığında daha uzun metrajlarda kullanarak birim maliyetleri çarpıcı oranlarda düşürmektedir.

Saha uygulamalarında uygun delici sarf malzeme seçiminin önemi "Smart" serisi makinelerdeki sıra dışı özelliklerine bağlı olmaksızın, diğer delici makinelerde de birim maliyetleri etkileyen fark edilebilir bir konudur.

Bu çalışmada, delici makine endüstrisindeki teknolojik gelişmeler ve uygulamadaki faydaları ve uygun delici sarf malzemeleri seçimi üzerine bilgiler sunulmaktadır. Anahtar Kelimeler: Patlatma deliği, sarf malzeme seçimi, delme maliyeti, delici makine

ABSTRACT: Drilling and blasting takes a remarkable part of the cost for rock excavation operations in both mining and construction business. Oil well and rock drilling tool consumptions are the main cost effecting parameters in rock excavation. According to bold increase on oil prices, work done with unit oil quantity becomes more important after all.

Reformer of the new hydraulic rock drilling machines, "SmartROC" has been developed by Atlas Copco. In this machine, both with less oil consumption and correct rock drilling tools selection, unit price for drilling decreases remarkably.

On site applications, rock drilling tools selection is independently important from extraordinary features of the Atlas Copco "Smart" series of rock drilling machines. In this study, importance of the rock drilling tools selection based on unit cost per meter of drilling.

Keywords: Blastholes, Selection of rock drilling tools, cost of drilling, drilling machine

1 GİRİŞ

Kaya kazısı işlemlerinde, yerin durumuna göre delme ve patlama işlemi uygulanmaktadır. Patlatma deliklerinin hazırlanmasında kullanılan paletli hidrolik delicilerin işletilmesi delme maliyetini oluşturmaktadır. İşletme maliyeti olarak, patlayıcı madde, operatör maliyeti, makine yedek parçaları, harcanan yakıt ve delme işlemini yapan sarf malzemesi en başta gelen maliyetler arasında yer almaktadır.

Yeni nesil delici makinelerde, yakıt sarfiyatını düşürecek geliştirmeler yapılmıştır. Bu gelişmelerin yanı sıra, delici sarf malzemelerin seçiminin de doğru şekilde yapılmasıyla, hem üretilen enerjinin de etkin kullanılmasına hem de delme işleminde birim maliyetlerin düşürülmesinde önemli rol oynamaktadır.

Delinecek kaya yapısına ve yapılacak kazı uygulamasına bağlı olarak seçilen, delme metodu sarf malzemelerin belirlenmesinde en önemli role sahiptir. Makine üzerinde bulunan sisteme göre, sarf malzemelerin dizilişi değişmektedir.

Farklı delme metotlarını oluşturan sistemleri açıklamadan önce delici sarf malzemeleri tanımlamak uygun olacaktır.

2 SARF MALZEMELER YERALTI YERÜSTÜ

2.1 Şank Adaptörü

Şank adaptörü (Resim-1), üstten darbeli delme metodunda darbeyi yaratan tabancanın içine yerleştirilen, piston hareketiyle oluşan darbe hareketini ve rotasyon hareketini, kızak üzerindeki baskı kuvveti ile birlikte, diğer takım elemanlarına aktaran birimdir. Darbenin ve rotasyon hareketini ilk karşılayan birim olması nedeniyle tabancaya uygun seçilmesi olumsuz sonuçlara engel olacaktır. Şank adaptörünün zaman içinde aşınması durumları haricinde zarar görmesi halinde, sistem gözden geçirilmelidir. Uygulama ile ilgili olarak operatör ve diğer elemanlar kontrol edilmelidir.

Resim 1. Atlas Copco COP 1838 ve 1840 Tabanca Şank Adaptörleri

2.2 Rod (Tij)

Şank adaptörüne aktarılan enerjinin (rotasyon ve darbe) delme esnasında hedeflenen derinliğe kadar iletilmesini sağlayan boruya rod (Resim-2) denir.

Rodlar birbirine manşon sistemi ile birbirine bağlanabildiği gibi, üzerine direkt olarak eklenmiş manşon yardımıyla da bağlanabilir. Bu rodların kullanımı, delici makinenin özelliklerine bağlı olarak değişmektedir. Şank adaptöründen gelen enerjinin aktarımı sırasında manşonlarda enerji kaybı olmaktadır. Bir ucu manşonlu olarak üretilen tijlerde bu kayıplar azaltılmaktadır.

Resim 2 a) Manşon ile eklenen rod b) Bir ucu manşonlu olarak üretilen rod

Delik dibi delme metodunda rodlar (Resim-3) eklenme biçimi olarak farklılık göstermektedir. Delik dibi delme sisteminde, makinede darbe yaratılıp iletilmediği için, bu metotda rodlar içinden hava geçişinin uygun sekilde olması daha önemli bir parametredir.

Resim 3. Delik Dibi Tabanca ile Delme metoduna ait rodlar

2.3 Delici Bit (Matkap)

Delici bitler (matkap), delici takım sisteminin kaya ile en çok temas içinde bulunan, kırma ve ilerlemeyi sağlayan en önemli kısmıdır. Farklı kaya şartları için, farklı tasarım ve özellikte olan bu delme elemanın seçiminin doğru yapılması, tüm sistemi doğrudan etkilemektedir.

Pistondan direkt veya şank ve rodlar yardımıyla gelen darbeyi kayaya ileten, üzerindeki elmas sertliğindeki tungsten karbit bit uçları kayayı darbe yardımıyla kırarak, kaya içinde delmeyi sağlamaktadır.

Farklı kaya sertliklerine göre, bu tungsten karbit uçların şekilleri (Resim-4) ve dizilişleri farklılık göstermektedir.

Uçlar, bıçak uçlu, yuvarlak, yarı balistik ve tam balistik şeklinde değişebilir.

Resim 4. Delici bit uç çeşitleri

Aynı delici uç özelliklerine sahip, yeraltı uygulamaları için tasarlanmış, uygun çaplarda bitler bulunmaktadır.

Ayrıca, yine kaya yapısına bağlı olarak, delik içinin temizlenmesinin zor olduğu şartlarda, delici bitin arkasında bulunan bıçaklı sistem yardımıyla, taneler kırılarak hava yoluyla taşınması kolay hale gelmektedir. Bu tip delici bitlere "Retrac" tipi bitler (Resim-5) adı verilmektedir. Bu bitler için de delici uç çeşitleri geçerli olmaktadır.

Resim 5 a) Retrac balistik bit b) Balistik bit

3 DELME METODUNA GÖRE DELİCİ TAKIMLARIN DİZİLİŞİ

Delme metotları darbenin üretildiği yere göre iki şekilde açıklanabilir. Bu metotlardan birincisi, üstten darbeli delme metodu olup, darbe kuvveti makine üzerinde bulunan tabanca tarafından üretilmektedir. İkinci metotta ise, darbe delik dibi tabanca sisteminde yaratılmaktadır (Resim-6).

(a) (b)

Resim 6 a) Üstten Darbeli Delme Sistemi b) Delik Dibi Kaya Delme Sistemi

3.1 Delik Dibi Tabanca ile Delme Sistemi

Delik tipi tabanca kullanılarak yapılan delme işleminde, delici makine takıma

baskı, dönüş ve hava sağlamaktadır. Bu yüzden, sistem makine üzerinde bulunan rotasyon birimi ile başlar. Burada makine ile sarf malzemeler arasında dişli farklı olması durumunda kullanılmak üzere adaptör dönüştürücüler yerleştirilmektedir.

Sistemin elemanlarını sırayla (Resim-7), rotasyon birimi, dişli dönüştürücü adaptör, rod, tabanca öncesi dişli dönüstürücü adaptör, delik dibi tabanca ve delici bit şeklindedir. Bu sistemde adaptörlerde enerji kaybı vasanmamaktadır. Darbe, tabanca tarafından direkt olarak bite iletilmektedir. Fakat yine de delici takım oluşturulurken fazla adaptör kullanılması tavsiye edilmemektedir.

Resim 7. Delik dibi tabanca ile delme metodunda takım dizilişi

3.2 Üstten Darbeli Delme Sistemi

Üstten darbeli delme metodunda makine delici takıma baskı, darbe, rotasyon ve hava sağlamaktadır. Makine üzerinde bulunan tabancayı, (Resim-8) şank, rod seçimine göre manşon, rod ve delici bit takip etmektedir. Üstten darbeli delme metodunda yeraltı ve yerüstü delme uygulamalarında, delici takımın bir araya gelmesini sağlayan dişli sistemi farklılık gösterebilmektedir.

Üstten darbeli delme metodunda, darbe makine üzerinde bulunan tabanca tarafından üretildiği ve elemanlara aktarıldığı için kayıplar meydana gelmektedir. Bu enerji kayıplarını azaltmak adına, birleştirici eleman olan ayrı bir manşon kullanımının yerine üzerinde fabrikada eklenmiş durumda bulunan manşonlu rodlar üretilmektedir. Bu rodların kullanılabilmesi adına da, makinelerde uygun rod ekleme sistemleri ortaya çıkmaktadır.

Resim 8. Üstten darbeli delme metodunda delici takım dizilişi

4 SARF MALZEME SEÇİMİNİN DELME İŞLEMLERİNDE BİRİM MALİYETLERE ETKİSİ

Delme işlemi sırasında, enerjinin, rotasyonun, baskının ve uygulamaya göre darbenin makine tarafından sağlanmasına karşın, delici takımı oluşturan elemanların varlığı ve doğru seçimi de önemli rol oynamaktadır.

Sarf malzemelerin de delme maliyetleri arasında alması yer nedeniyle, delici makineler üzerinde de delici takımları korumak ve verimli kullanılması icin sistemler kullanılmaktadır. Üstten darbeli delme metodunda, bu sistemler daha baskin sekilde bir göze çarpmaktadır. Makinede üretilen tüm enerji yalnız uygun oluşturulmuş delici takım sistemi ile kayaya aktarılmak suretiyle, delme işlemi gerçekleştirilebilir.

Şank adaptörü, üstten darbeli delme sistemlerinde yer almaktadır. Seçim yapılırken, makine üzerinde bulunan tabancaya uygun olacak şekilde tercih edilmektedir. Uygulamanın yeraltı veya yerüstü olmasına bağlı olarak, diş sistemi (T, R, SR, TC) değişiklik göstermektedir.

Rod tercihi yapılırken, delinecek delik çapı önemlidir. Bit delme işlemini gerceklestirirken, kırılan kava parçaları delik içinde oluşan sütunda hareketini rodun etrafinda gerçekleştirmektedir. Bu yüzden delik capi ile tercih edilen rodun caplari arasında kırılan tanelerin atılması icin bir fark olmalıdır. Daha net bir ifadeyle, seçilen bit çapı rodun ve manşonun çapından büyük olmalıdır. Özel uygulamalarda bit ve rod çapı birbirine yakın tercih edilebilir. Rod üzerindeki aşınmalar çok olacağından, sarf malzemeden doğan maliyetler artacaktır.

Delici sarf malzeme seçiminin vapılması durumunda, uygunsuz maliyetlerin arttığı gözlemlenmektedir. Delici makine yatırımı yapıldıktan sonra, artık maliyetleri değiştirmek sarf malzeme tercihleri ile sağlanabilir. Örneğin, kaya dayanımı dikkate alınmadan tercih edilmiş bir bitin, makine avarları sabit kabul edilmek koşuluyla, yavaş delmesi söz konusu olacaktır. Bu da birim zamanda, makine tarafından harcanan yakıtın verimsiz birim kullanılması ve maliyetlerin artması ile sonuçlanacaktır.

Delme işlemi yapılan bazı kayalar sıvanma özelliği gösterebilmektedir. Bu durumda, delik içinin temizlenmesi için daha fazla hava akışına ihtiyaç duyulmaktadır. Hava akışını arttırmak için, bit seçilirken ön yüzünde veya yan tarafında daha fazla delik bulunan modeller (Resim-9) tercih edilebilir.

Resim 9. Farklı model bitlerin ön taraftan görünüşü

Aşındırıcı bir kaya ortamı ile karşılaşıldığında, hem çelik yapısı ağır koşullara uygun olan hem de delici uçları daha büyük ve aşınmaya karşı dayanıklı olan bit tercih edilebilir. Bu sayede aşındırıcı maddenin temas yüzeyi artacağı için delici uçların içinde bulunduğu bu koşula uygun gövde daha az aşınacaktır.

Delik dibi delme metodu delici takım tercihlerinde ise, tabanca ve bitin seçimi öne çıkmaktadır. Rodların boy, çap ve dişli sistemleri makinenin teknik özellikleri ile belirlenirken, asıl delme işlemini gerçekleştiren kısım, tabanca ve bit uygulamaya göre tercih edilmelidir. Delik dibi tabancalar da farklı çaplarda olmaktadır. Burada da yapısı tabancaların farklı kava ortamları için tasarlanmıştır. Deliklerde su ve parçacıkların bulunduğu kaya ortamlarında kullanılan tabanca ile sağlam bir kaya kullanılacak tabancanın ortamında (Resim-10) ve tasarımı icvapisi farklılık gösterebilir. Tabanca tercihleri yapılacak işin hacmi ile de orantılı olarak yapılabilmektedir. Kaya ortamının uygun olduğu koşullarda, daha seri delme işlemi gerçekleştiren tabanca tasarımları bulunmaktadır. Bu metotta bit seçimi yapılırken de çap ve tabancaya uygun olanlar tercih edilmelidir. Birbiriyle uyumlu çalışması gereken bu iki delici takım elemanı, genellikle aynı üreticiden temin edilmek durumundadır.

Ortam koşullarına uygun seçilmiş tabanca ve bitin daha hızlı delik delmesi, birim zamanda yapılan iş miktarını arttıracağından, delik dibi delme sistemlerini kullanabilen makinelerde de sağlanan enerji miktarının sabit olmasıyla yapılan birim işin maliyetini düşürmektedir.

Resim 10. Delik dibi tabancanın iç görünüşü

Maliyet kavramını birim zamanda yapılan iş miktarının parasal değeri olarak ifade etmek mümkündür. Bu yüzden de, delici makinelerde bulunan ekstra özelliklerden bağımsız olarak, delici sarf malzemelerin uvgun secimi ile de birim zamanda yapılan iş miktarı arttırılabilmektedir. Farklı kava yapılarına göre tercih edilmiş bu delici takım elemanlarının da kendilerinin bir maliyet olması nedeniyle, yeni nesil makinelerde kontrol sistemleri düzgün delikleri delinmesine katkıda bulunurken, delici sarf malzemelerin de sağlıklı kullanılmasını sağlamaktadır.

5 YENİ NESİL HİDROLİK DELİCİ MAKİNELERDEKİ KONTROL SİSTEMLERİNİN SARF MALZEMENİN SAĞLIKLI KULLANIMINA ETKİSİ

Yeni nesil kaya delici makinelerde, mevcut sistemlerin tümü bulunurken, kontrol mekanizmasını bilgisayar

sistemleri oluşturmaktadır. Bilgisayarlı kontrol sistemleri kayaya iletilen ve geri dönen enerji miktarı arasındaki ilişkiden yararlanarak üretilen güç miktarını ayarlamaktadır. Örneğin, darbe uygulandığı zaman, tekrar şank üzerinden geçerek tabancaya dönen kuvvetinin miktarına tepki göre makine, etki ve tepkiyi eşitlemeye yönelik bir takım önlemler almaktadır. Atlas Copco paletli hidrolik delici üretici firmasının "SmartROC" adıyla tüketiciyle buluşturduğu yeni nesil delici makineler, yakıt sarfiyatının düşüklüğü ile dikkat çekerken, delici takımın ömrünün uzamasına yardımcı bilgisayar kontrollü mekanik sistemleri barındırmaktadır.

Olması gerektiği kadar enerjinin üretildiği ve iletildiği bu sistemlerde, delici takım üzerindeki enerji de dengelenmiş olduğu için daha uzun ömürlü olması sağlanmaktadır. Delici takımların ömrünün uzamasıyla, aynı delici sarf malzeme ile yapılan iş miktarı da doğru orantılı olarak artacaktır. Bu da yine maliyetlere olumlu bir şekilde yansıyacaktır.

6 SONUÇ

Kaya delme işlemi birçok maden ve insaat islerinde kullanılmaktadır. Uygulamaların özelliklerine göre secilmis delici makinelerle vapılacak işin özelliklerine göre delici sarf malzeme seçimi yapılmaktadır. Bu malivetlerini tercihlerin delme etkilediği bilinmektedir. Secimler yapılırken birbirleriyle uyumlarının yanı sıra, kaya ortamı şartlarına da uygun olması en önemli kıstastır.

Zamanın para anlamına gelmesi dolayısıyla, birim zamanda daha fazla iş yapmanın maliyetlerin düşürülmesine yararı olacaktır. Delme işlemi sırasında da sabit koşullarda makine tarafından üretilen enerjinin verimli kullanılması adına sarf malzeme seçiminin katkısı göz önünde bulundurulmalıdır.

Farklı delme metotlarında, delici takımın sıralanması da değişiklik göstermektedir. Üstten darbeli delme metodunda darbe makine üzerindeki tabancada yaratılırken, delik dibi delme metodunda tabanca bitin hemen arkasında bu darbeyi yaratmaktadır. İki metotta üretilen darbe enerjisi farklı şekilde bite ve dolayısıyla kayaya iletilmektedir.

Hidrolik delici makinenin seçiminden hemen sonra, delici sarf malzemelerin de uyumlu seçilmesi delme işleminin daha düşük maliyet olmasına sebep olacaktır. Düzgün delikler delinmesine yardımcı olduğu gibi, makine üzerindeki enerjinin verimli kullanılması ve kayaya doğru miktarda aktarılmasında önemli rol ovnamaktadır.

Petrol fiyatlarının artışı, hidrolik kaya delici makinelerin delme maliyetlerine yansımaktadır. Yeni nesil makinelerin pazara sunulması ve bununla eş değerde uygun delici sarf malzeme tercihinin vapılmasıyla, petrol getirdiği fivatlarının bu vüksek maliyetlerin düşürülmesine sebep olmaktadır.

KAYNAKÇA

- 1. Tophammer Equipments, Atlas Copco
- 2. DTH Equipments, Atlas Copco
- "Geology/Drilling Theory", RDT, Atlas Copco

Halkapınar-Otogar Güzergâhındaki Sığ Metro Tüneli'nin 3 Boyutlu Sayısal Modelleme İle Analizi

3 Dimensional Numerical Modeling of Shallow TBM Tunnel between Halkapınar and Otogar Route

C. O. Aksoy, K. Küçük, T. Onargan, V. Özacar,

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Maden Mühendisliği Bölümü, İzmir-Türkiye Y. Eyigün

Ulaştırma, Denizcilik ve Haberleşme Bakanlığı, Altyapı Yatırımları Genel Müdürlüğü, Ankara-Türkiye

ÖZET İzmir'de son dönemlerde yapılan yatırımlar içerisinde önemli bir yere sahip olan metro yatırımları arasında Halkapınar-Otogar güzergahı, İzmir'in toplu ulaşım kolları arasında uzun yıllardır bekleyen bir konudur. Bölgedeki jeolojik yapının çok zayıf olması, güzergâh üzerinde çok eski ve yorulmuş yapıların yoğun şekilde bulunması, trafik açısından bakıldığında güzergâhın önemli bir kanal oluşturması gibi konular düşünüldüğünde, bu bölümde yapılacak olan tünel kazıları konusunda oldukça hassas olunması gerekliliği ortaya çıkmaktadır. Bu nedenle, çok iyi bir jeoloik ve jeoteknik araştırma sonucunda güzergâhta açılacak tünelin tünel açma yönteminin doğru şekilde belirlenmesi, tünel çapının belirli standartlara bağlı kalınarak seçilmesi ve çevreye vereceği olumsuz etkilerin önceden detaylı şekilde ortaya konması gerekmektedir. Bu çalışmada, bahsi geçen güzergâhta açılacak olan tünelin gerilme-deformasyon analizleri 3 boyutlu sonlu elemanlar yöntemi ile yapılmıştır. Sonuçta, tünelin açılması ile ortaya çıkacak olan zemin oturma miktarları, tünel içi deformasyonlar, tünel segmentine gelen eksenel yükler, kesme kuvvetleri ve eğilme momentleri gibi tasarım parametreleri de belirlenmiş olup, tünelin çevre yapılara verecek olduğu hasarın kabul edilebilir sınırlar içerisinde kaldığı belirlenmiştir.

Anahtar Kelimeler: Metro, Sığ Tünel, Sayısal Modelleme

ABSTRACT Investments, made in recent years in Izmir, which has an important place in the Otogar-Halkapinar of route in the arms of the public transportation route for many years, waiting for the subway is a matter of Izmir. The geological structure of the region is very weak, the route is heavily on the presence of a very old and tired buildings, traffic constitute an important channel in terms of issues such as the route is concerned, tunnel excavations to be made in this section need to be very sensitive to emerge. For this reason, a very good route to be opened as a result of these geological and geotechnical investigation to determine correctly the method of tunnelling, the tunnel, the tunnel diameter adherence to certain standards, pre-selection and negative impacts to the aforementioned tunnel route, which will be performed by three-dimensional finite element method. Ultimately, that will arise with the opening of the tunnel ground settlements, tunnel deformations, the axial loads, shear forces and bending moments as well as the design parameters of tunnel segment have been determined, the effect of tunnel remains within acceptable limits the damage to surrounding structures were determined.

Keywords: Metro, Shallow Tunnel, Numerical Modelling

1. GİRİŞ

Günümüzdeki tüm büyük şehirlerde olduğu gibi İzmir'de de hızlı yapılaşmanın yarattığı en önemli sorunlardan birini oluşturan şehir içi ulaşımı ve bunun hava ve gürültü kirliliğine olumsuz etkisini ortadan kaldırmak ya da en aza indirmek amacıyla planlanan İzmir Metrosu ve Hafif Raylı Sistemi günümüze kadar değişik aşamalarda gerçekleştirilmiş ve gerçekleştirilmeye de devam edilmektedir.

İZRAY Projesi kapsamında bulunan İzmir Hafif Raylı Sistemi III. Aşama'sı olarak önceki yıllarda planlanmış olan Halkapınar – Otogar arasında yer aldığı güzergâh incelemelerimiz onaylı projeler (35202-001 ila 35202-011 no'lu güzergâh paftaları) kapsamında önceki bilgiler ve raporlar ışığında değerlendirilmiştir.

Bu raporda öncelikli olarak ele alınıp incelenen Yapı Teknik Mühendislik Müşavirlik Ltd. Şti. tarafından hazırlanmış olan Şubat-2006 tarihli "İzmir Hafif Raylı Sistem Projesi 3. Aşama Halkapınar – Otogar Bağlantısı Jeoteknik raporu" nda (Yapı Teknik Proje, 2006) mevcut jeoteknik bilgiler ve değerlendirmeler tarafımızca hazırlanmış olan bu rapor kapsamında esas alınmıştır. Şekil 1'de incelenen güzergâhın yerleşim alanlarına göre konumunu veren uydu haritası ve güzergâh hattı bir arada görülmektedir.

İncelenen rapor kapsamında detaylı olarak verilmiş olan SK-1, SK-2, SK-3, SK-4 ve SK-5 sondajlarının tamamı incelenen güzergâh üzerinde yer almaktadır. Gerçekleştirilmiş olan sondaj verileri ve bu sondajlardan elde edilen örnekler üzerinde yapılmış olan laboratuvar test sonuçları ve sahada yerinde yapılmış olan test verilerine göre geçilecek olan zeminlerin mühendislik özellikleri hakkında ön bilgiler elde edilmiş ve bu bilgilere dayanılarak bazı ön analizler gerçekleştirilmiştir.

Şekil 1. İncelenen güzergâh

2 GENEL JEOLOJİK YAPI

İncelenen güzergâh, kısmen İzmir körfezi grabeni ve kısmen Bornova ovası içinde yer almaktadır. Şekil 2'de çalışma alanına ait 1/5.000 ölçekli pafta karelajı içerisinde jeolojik birimlerin dağılımı verilmiştir.

İnceleme alanının topografyasına bakıldığında, Halkapınar yöresinin + 2-4 metre kotlarında olduğu ve topografyanın doğuya doğru yükselerek Otogar yöresinde 24 –26 kotlarına ulaştığı görülür. Halkapınar yöresinde, elli metre derinliğe kadar yapılan sondajlarda, Otogar yöresinde otuz metreye kadar yapılan sondajlarda neojen'e ait çökeller içinde kalınmış ve ana kayaya ulaşılamamıştır. Bu gözlemler sonucu, Halkapınar – Otogar HRS projesi ile ilgili açılacak yer altı açıklıklarının alçak ova tabanında neojen'e ait çökeller içinde kalacağı kesindir. Söz konusu güzergâhta "Silt-Kil Ağırlıklı Zemin" ile güzergâhın otogar tarafında "Kum-İnce Çakıl Ağırlıklı Zemin" içerisinde çalışılacaktır (Yapı Teknik Proje, 2006).

Şekil 2.Çalışma alanına ait 1/5.000 ölçekli pafta karelajı içerisinde jeolojik birimlerin dağılımı (Birimlerin açıklaması için Bkz. Şekil 4.).(Kıncal, 2004).

3.1 Halkapınar Yöresi

Yüzeyde 2-3 metre kalınlıkta dolgu malzemesi geçildikten sonra, ilk 15 –17 metrede SPT değerleri 10'u geçmeyen gevşek killere veya killi siltlere rastlanmaktadır. Bu gevşek malzemenin altında 7-8 metre kalınlığında kum ve çakıl karışımından oluşan sert bir tabaka görülmekte ve bunun da altında sert, plastisitesi değişken siltli kil veya killi silt tabakalarına rastlanmaktadır.

3.2 Otogar Yöresi

Otogar yöresinde killi çakıl veya çakıllı kil ardalanması 30 metre derinliğe kadar devam etmektedir. Bundan sonra yer yer çakıl cepleri içeren sert killer görülmektedir. Yapılan incelemeler ve değerlendirmeler sonucu, Halkapınar'da gözlenen gevşek kil veya killi silt tabakalarının gittikçe incelerek otogar yöresine kadar uzandığı tahmin edilmektedir.

3.3 Yeraltı Suyu Durumu

Halkapınar yöresinde yer altı suyu yüzeye çok yakındır. Mevcut zeminin yaklaşık 2 metre altında yer altı suyu tabakasına rastlanmaktadır. Diğer bir deyimle, yer altı suyu kotu 0.00 alınabilir. Otogar yöresinde ise yer altı suyu tabii zeminin yaklaşık 10 – 15 metre altına gözlenmiştir.

3.4 Hidrojeoloji

"İzray İzmir Hafif Raylı Sistemi 3. Aşama Jeoteknik Değerlendirme Raporu" başlıklı çalışma kapsamında açılan sondajlarda tünel güzergâhı ve diğer aç-kapa inşaat kazı kotları üzerinde yeraltı su seviyeleri tespit edilmiştir (Yapı-Teknik Proje, 2006).

Tünel güzergâhı civarında yeraltı suyu derinliği 2-4 metre ile 6-12 metre aralığında görülmektedir.

4 TÜNEL AÇMA MAKİNESİ İLE YAPILACAK TÜNEL KAZISININ VE OLASI ETKİLERİNİN NÜMERİK MODELLEME İLE DEĞERLENDİRİLMESİ

Bahsi geçen güzergâhta öncelikle 14 m çapında tek tüp tünel açılması planlanmıştır. Güzergâh boyunca yoğun yapılaşma olması, binaların eski ve deprem yönetmeliği öncesi yapılmış olması ve zemin durumu da göz önüne alınarak analitik çözümleme ile durum incelenmiştir. Analitik inceleme sonrasında oluşan tasmandan dolayı binalarda ağır hasarlar olabileceği görülmüştür. Bu sebeple, güzergah üzerinde 7 m çapında çift tüp tünel açılması durumu incelenmiştir. Analitik çözümleme sonucunda oluşan etkilerin kabul edilebilir sınırlar içerisinde olduğu görüldüğü için bu senaryonun Sayısal modelleme ile incelemesi yapılmıştır. Çizelge 1'de tünele ait parametreler verilmektedir (Aksoy vd., 2012).

Teknik Parametreler	Değer
Tünel Kazı Çapı (m)	7
Tünel Örtü Kalınlığı (m)	14,58
Zemin Kotu (Siyah Kot)	+14,25
Ray Kotu (m)	-8,25
Yer altı Su Seviyesi (m)	10-12
Geçilen hakim zemin	Sarı, yeşil renkli orta katı-çok katı kıvamdaki doygun kil (yer yer kumlu çakıllı (SPT= 9-26)
Ortalama Doğal Birim Hacim Ağırlığı (g/cm ³)	1,85
Ortalama drenajsız kayma dayanımı-kohezyon t/m ² (MPa)	2,8 (0,028)
Ortalama Elastisite Modülü t/m ² (MPa)	4000 (39,2)

Çizelge 1. 7 Metrelik delme tünel için proje teknik parametreleri ve formasyon özellikleri

4.1 Halkapınar-Otogar Güzergâhında Açılması Planlanan 7 Metre Çaplı İkiz EPB TBM Tünellerinin 3 Boyutlu Sayısal Modelleme Yöntemleri İle Analizi

Eser Müsavirlik Mühendislik A.S. Tarafından Yüklenilmiş olan "Kemalpaşa-Torbalı ve Alsancak Limanı Bağlantısı Demiryolu Etüd Proje Ve Mühendislik" işi Halkapınar-Otogar kapsamındaki arası güzergâhta bulunan çok zayıf zemin koşullarında açılması planlanan tünelin boyutlarının belirlenmesi amacıyla yapılan çalışmalar kapsamında tünel çözümünün Sonlu Elemanlar yöntem ile gerçekleştirilen Sayısal model çalışması bu bölümde verilmektedir.

4.2 Sayısal Modellemede Kullanılan Destekleme Elemanları ve İnşaat Asamaları

Tarafimiza iletilen dökümanlar ve tarafimizca yapılan saha çalışmaları kapsamında yapılan değerlendirmeler sonucu tünel güzergâhının idealize edilmiş zemin profili ve modelleme sonucu oluşan deforme olmuş durum Şekil 3'de ve verilmektedir.

Şekil 3. Çalışma alanının idealize edilmiş zemin profili ve modelin deforme olmuş hali

modellemede malzemelerin Savisal tanımlanmasında önce daha yapılmış laboratuvar jeoteknik sondajlar ve dikkate alınmıştır Yenilme çalışmaları koşulu olarak dolgu malzemesi için Mohr-Coulomb yenilme koşulu ve Orta Katı Kil için Hardening Soil model kullanılmıştır. TBM 3 boyutlu plak (Plate) eleman (eğilme ve eksenel rijitliğe sahip) olarak, tünel kaplaması ise 3 boyutlu hacimsel sonlu eleman olarak modellenmistir. Tünel kaplaması için elastik malzeme davranışı göz önüne alınarak Young modülü 31000 MPa, Poisson oranı 0.1 ve birim hacım ağırlığı 24 kN/m³ alınmıştır. Modelde tünel aynasında uvgulanan dengeleme basıncı için Broere (2001)tarafından önerilen aşağıdaki eşitlikten yararlanılmıştır:

$\sigma = K_0 \gamma' Z0 + \sigma W + 20 kPa$

K₀ için 0,4 değeri kullanılarak alın basıncının tünel tepesinde 90 kPa olduğu ve derinlikle 14 kPa olduğu kabul edilmiştir. Grout basıncı olarak da 200 kPa lık bir basınç TBM kuyruğunda bulunan kaplama anosunda (1,4)m) tünel çeperine uygulanmıştır. Analizler sırasında TBM in tepki kuvveti olarak 640 kPa lık bir basınç, tünel ekseni doğrultusunda kaplama elemanlara uygulanmıştır. Analizler sırasında her bir adım için TBM uzunluğunca (8,6 m) hacim kaybı olarak %0,5 değeri alınmıştır. 3B tünel modelinde tünel-zemin ve temelzemin etkilesimi icin ara yüzey (Negatif Interface) elemanlar göz önüne alınmıştır. TBM kazısında bir ilerleme boyu 1,5 m olarak seçilmiştir. Elde edilen sonuçlar

aşağıda verilmektedir. Sonlu elemanlar ile Sayısal modelleme yapabilmek için Plaxıs 3D Tunnel V2 (Plaxis Manual, 2008) programı kullanılmıştır. Oluşturulan modelde, Otogar-Halkapınar güzergahındaki idealize edilmiş zemin profili modele entegre edilmiştir. Yolda 15 kN/m² trafik yükü ve yol kenarlarında yoğun yapılaşmadan dolayı 30 kN/m² bina sürşarj yükü tanımlanmıştır. Yeraltı suyu tablası zeminde 5 m aşağıda olacak şekilde modele girilmiştir.

4.3 Sayısal Modelleme Sonuçları

Aşağıda analiz sonuçları şekiller itibariyle verilmektedir. Buna göre Şekil 4'te oluşturulan modelin deforme olmuş hali,

Şekil 5'te modelde oluşan toplam deformasyonların kontursal görünümü, Şekil 6'da modelde olusan yatay deformasyonların kontursal görünümü, Sekil 7'de modelde olusan düsey deformasyonların kontursal görünümü, Şekil 8'de analiz sonucunda yeryüzünde oluşan düşey oturma miktarının temsili görünümü (Maksimum: 21.43 mm), Şekil 9'da yeryüzünde oluşan toplam oturma miktarının temsili görünümü (Maksimum: 21.43 mm), Sekil 10'da ise modelde oluşan efektif gerilmelerin kontursal görünümü verilmektedir. Aşağıda ayrıca Şekil 11'de modelde oluşan asal gerilmelerin kontursal görünümü, Şekil 12'de analiz sonucu oluşan boşluk basıncının kontursal görünümü verilmiştir.

Deformed Mesh Extreme total displacement 23.43*10⁻³ m (displacements scaled up 200.00 times)

Şekil 4. Modelin deforme olmuş hali

Şekil 5. Modelde oluşan toplam deformasyonların kontursal görünümü

Şekil 6. Modelde oluşan yatay deformasyonların kontursal görünümü

Şekil 8. Yeryüzünde oluşan düşey oturma miktarının temsili görünümü (Maksimum: 21.43 mm)

Manager of

Şekil 9. Yeryüzünde oluşan toplam oturma miktarının temsili görünümü (Maksimum: 21.43 mm)

Şekil 10. Modelde oluşan birincil efektif gerilmelerin kontursal görünümü

Şekil 11. Modelde oluşan birincil asal gerilmelerin kontursal görünümü

Şekil 12. Modelde oluşan boşluk basıncının kontursal görünümü

Aşağıda analiz sonucu tahkimatta oluşan gerilme analiz değerleri grafiksel olarak değerleri ile birlikte verilmektedir. Şekil 13 de TBM segmentlerinde oluşan "Eksenel Kuvvetler" (Maksimum: -581.70 kN/m), Şekil 14'te TBM segmentlerinde oluşan kesme kuvvetleri (Maksimum: - 6.52 kN/m), Şekil 15'de ise TBM segmentlerinde oluşan eğilme momentleri (Maksimum: -27.81 kNm/m) şekil üzerinde verilmektedir.

Şekil 13. TBM segmentlerinde oluşan Eksenel Kuvvet (Maksimum: -581.70 kN/m)

Şekil 14. TBM segmentlerinde oluşan kesme kuvveti (Maksimum: - 6.52 kN/m)

Şekil 15. TBM segmentlerinde oluşan eğilme momenti (Maksimum: -27.81 kNm/m)

1342

5 SONUÇLAR VE TARTIŞMA

Otogar-Halkapınar güzergâhında açılması planlanan EPB TBM tünelinin çevresel etkilerini ve kazı-tahkimat aşamalarını tanımlayabilmek amacıyla daha önce jeoteknik vapilmis olan sondai ve laboratuvar deneylerine dayalı olarak bir ön değerlendirme calısması yapılmıştır. Analitik ve ampirik hesaplamalar sonucu genis tek tüp (14 m çaplı) tünelin olumsuzlukları değerlendirilerek 7 m çapında 2 tünel açılmasının daha uygun olduğu görüşü oluşmuştur.

Bu görüşle birlikte yapılan çalışmalar kapsamında 3 boyutlu sayısal modelleme analizleri yapılmıştır. Elde edilen sonuçlar incelendiğinde, modelde oluşan toplam tasman (oturma) miktarının 23,43 mm, yatay deformasyonların 7 mm ve düşey deformasyonların 23,35 mm olduğu tespit edilmiştir. Oluşturulan modelde olusan efektif gerilmelerin 289,73 kN/m², toplam gerilmelerin 619,73 kN/m² ve bosluk basincinin 330 kN/m^2 olduğu tespit edilmiştir. Tünel segmentine etkiyen tesirler incelendiğinde, segmentlerde maksimum 581,70 kN/m eksenel kuvvet, 6,52 kN/m kesme kuvveti, 27,71 kNmm eğilme momenti olduğu görülmüştür. Bu çalışma sonucunda EBP TBM ile açılacak 7 m çapındaki ikiz tünellerin stabil olacağı ve çevredeki yapılarda önemli bir hasara neden olmayacağı düşünülmekle birlikte, bu çalışma analitik yol ile yapılan çalışmalar ile teyit edilmiş ve başka bir çalışma kapsamında bu sonuçlar verilmiştir. Ancak, bölgesel konumsal riskler ve düsünüldüğünde, tünel acma isleri esnasında gecilecek olan özellikle cakıllı zeminlerde ve iri taneli silt-kil geçişlerinde tünel üzerinde gerekli yerlerde küçük bir enjeksiyon katmanı oluşturmaya yönelik uygulamalar düşünülebilir.

TEŞEKKÜR

Bu çalışma, ESER MÜHENDİSLİK MÜŞAVİRLİK A.Ş. tarafından desteklenmiştir. Bu nedenle, yazarlar ESER MÜHENDİSLİK MÜŞAVİRLİK A.Ş.'den Özay Öz, Gürsoy AKAGÜNDÜZ, A. Bülent TİRYAKİ, Belma ÜNVER'e teşekkür ederler.

KAYNAKLAR

- Kıncal C., (2004), İzmir İç Körfezi Çevresinde Yer Alan Birimlerin Coğrafi Bilgi Sistemleri ve Uzaktan Algılama Teknikleri Kullanılarak Mühendislik Jeolojisi Açısından Değerlendirilmesi. D.E.Ü. Fen Bilimleri Enstitüsü Doktora Tezi, 3420 sayfa. İzmir.
- Yapı-Teknik Proje, (2006), İzmir Hafif Raylı Sistem Projesi 3. Aşama Halkapınar – Otogar Bağlantısı Jeoteknik raporu
- Aksoy CO., Onargan T, Küçük K. Pamukçu P, Özacar V., vd., (2012), Kemalpaşa-Torbalı Ve Alsancak Limanı Bağlantısı Demiryolu Etüd Proje Ve Mühendislik İşi Ön Raporu.
- Boere W., (2001), "Tunnel Face Stability&New CPT Applications", Ph D. Thesis, Technisce Universiteit Delft, Delft Universty Press, Netherlands.

Plaxis Manual, 2008.