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ABSTRACT: This paper addresses the need for the development of novel inverse solution methodologies 
with applications in the analysis of the pressure transient data collected from coalbed methane drainage wells 
for the purpose of characterization of the transport and storage characteristics of the coal. Typically, the 
transport and storage parameters are determined experimentally from the coal samples that are collected dur­
ing the drilling operation. Due to the small size of the core plugs collected and the difficulty in preserving 
these samples in their virgin states as well as the challenges in restoring the original field conditions in the 
laboratory, it is proposed to develop in situ measurement protocols for the same purpose. The utilization of 
artificial neural networks (ANNs) as a potential tool in formation characterization using the in situ collected 
data is explored in this study. Several ANN models that are specifically constructed to analyze the pressure 
transient data collected from coalbed reservoirs are presented in an increasing order of complexity. 

I INTRODUCTION 

Coal seams are known to be source rocks for natural 
gas and are classified under unconventional gas res­
ervoirs. A coalbed reservoir is different from its con­
ventional counterpart in that it has a densely spaced 
natural fracture system and a good majority of the 
gas is found in the adsorbed state. Thus, conven­
tional well test analysis techniques are not applicable 
in the analysis of well testing data collected from 
coalbed reservoirs. Anbarci & Ertekin (1991) devel­
oped an analytical forward solution model, which 
can be used in the analysis of the pressure transient 
behavior of coal seams. Type curves generated from 
this forward model can be employed to determine 
some of the coal seam properties. However, type 
curve matching analysis is limited to a relatively 
small range and a limited combination of these prop­
erties. 

The principal objective of this paper is to demon­
strate the efficiency and applicability of artificial 
neural networks in characterizing the transport and 
storage properties of coal seams, such as permeabil­
ities, macropore porosity, and sorption parameters 
such as Langmuir volume and pressure constants 
and sorption time constant. 

2 ANN AS AN INVERSE SOLUTION 
METHODOLOGY 

ANNs have been used in a wide variety of fields to 
solve problems involving classification, function 
approximation, forecasting, control systems, etc. 
ANNs are considered as information-processing 
systems with certain performance characteristics that 
are in common with biological neural networks 
(Fausett, 1994). An ANN is made up of a large 
number of parallel-distributed processing units 
called neurons, which are simplified analogs of the 
human brain cells. These units store experiential 
knowledge and resemble the brain in certain aspects. 
Artificial neural networks acquire knowledge 
through a learning process and intemeuron 
connection strengths (known as weights) store the 
acquired knowledge. One type of ANN commonly 
used in petroleum and mining engineering 
applications is backpropagation network (BPN). A 
typical BPN architecture is shown in Figure I. 

The number of neurons in each layer of this ar­
chitecture is chosen for simple illustration, but can 
vary with problems. Training a network by back-
propagation involves three stages: feedforward of 
the input data, calculation and backpropagation of 
the associated error, and adjustment of the connec­
tion weights (Fausett, 1994). 
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Fıguıe 1 A simple backpiopagation network (BPN) with 
one hidden layer 

The inherent enormous parallel processing capability 
of ANNs makes them a promising tool in analyzing 
the well test data. The learning ability of ANNs can 
be effectively utilized in predicting properties of the 
coal seams. 

In well testing, pressure transients (output) meas­
ured at a well represent the response of a coal seam 
to the conditions imposed at the wellbore (input). 
In an inverse analysis application using ANNs, pres­
sure transient data and other known parameters such 
as reservoir temperature (T), wellbore radius (rw), 
gas production rate (q), reservoir thickness (h), coal 
density (pc) and reservoir initial pressure (p,) define 
some of the input neurons. At the same time, coal 
seam properties such as anisotropic permeabilities 
(kx, ky), porosity (<|)), Langmuir volume constant 
(VL), Langmuir pressure constant (PL) and sorption 
time constant (t) constitute the output neurons. Fig­
ure 2 is a schematic representation of the forward 
and inverse solution procedures in system analysis. 
In this figure, " I " represents the input, "O" is the 
output and "S" is the system's characteristics. 

Figure 2. Forwaid .solution and inverse solution com­
ponents of a system analysis piotoeol 
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Figure 3 A typical pressin e transient behavior of a 
methane drainage well 

3 DEVELOPMENT OF ANN MODELS 

There are two important processes irç developing an 
ANN model: the training data preparation and the 
design and testing of an appropriate architecture. 

3.1 Data preparation 

Since the quality of the training data directly con­
trols the ANN's behavior, its importance cannot be 
over stressed. The training data should provide a 
good representation of the problem within a large 
range of properties relevant to the solution domain. 
The working principle of an ANN is more like that 
of a human brain. With the help of biological neu­
rons, one recognizes objects on the basis of their 
different characteristics. A similar convention is ap­
plied to ANNs. As they need to be taught of certain 
characteristics to distinguish and ultimately predict 
and associate different properties for various pat­
terns. 

Figure 3 shows the characteristic dual-porosity 
behavior of coalbed methane reservoirs when (p,c"-
pw") is plotted against the logarithm of time. In this 
plot, two parallel straight lines represent the early 
and late time behaviors of the coalbed reservoirs, re­
spectively. It should be noted that there is a transi­
tion period marked by circles when the pressure 
transient data shift from the first straight line to the 
second one. To characterize the overall behavior of 
such a signature, several data points matching some 
key events need to be identified within the transition 
zone as well as off the two straight lines. The slope 
of the straight lines, the vertical separation of the 
two straight lines and the time to reach the second 
straight line all contain information related to the 
transport and storage characteristics of a coalbed 
reservoir. The product of permeability and reservoir 
thickness (kh) can be calculated from the slope of 
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these two parallel lines. In well test analysis, perme­
ability (k) can be obtained if the reservoir thickness 
is known from geological, geophysical or drilling 
data. Porosity (())) can be inferred after permeability 
is calculated. The sorption time constant, x, can be 
obtained from the starting time of the second straight 
line. Finally, using the vertical distance (d) between 
these two lines, one of the sorption parameters VL or 
PL can be calculated. 

The ranges of the data utilized in the training of 
the model are presented in Tables 1 and 2. 

3.2 Designing and testing of the ANN architecture 

The architecture of an ANN is not completely con­
strained by a given problem. Although number of 
input and output neurons utilized depends on the 
problem studied, functional links that are introduced 
to the ANN structure alters its topology. There exits 
no rigorous rules to guide the ANN practitioner in 
the choice of number of hidden layers and the num­
ber of neurons within the hidden layers. To obtain an 
appropriate architecture for a given problem, inten­
sive testing of the prediction capabilities of the ANN 
must be conducted after the training of the model is 

Table I- Ranges of ihe predicted parameters. 

Pai ameter 

Porosity 
Face cleat 

permeability 
Butt cleat 

peimeability 
Langmuir 

piessure con­
stant 

Langmuir 
volume constant 

Minimum 
value 

1 

0.1 

0.1 

15 

10 

Maximum 
value 

S 

100 

50 

200 

600 

Unit 

per cent 

mil 

mil 

psia 

SCF/TON 

Table 2-Ranges of the input parameters. 

Parameter 

Wellbore radius 

Formation 
thickness 
Flow rate 

Coal density 
Initial reservoir 

pressure 
Reservoir 

temperature 

Minimum 
value 

0.25 

2 
0.05 

1.30 

400 

60 

Maximum 
value 

0.5 

20 
5 

1.40 

1500 

160 

Unit 

ft 

ft 
MMSCF/ 

d 
g/cm' 

psia 

°F 
completed. These two processes, training and test­
ing, are revisited in a recursive manner until the pre­
diction results are found to be satisfactory. 

Since a neural network without a hidden layer can 
only solve linearly separable problems, at least one 
hidden layer is needed to solve the class of nonlinear 
problems. Two hidden layers are used in each of the 
ANN structures developed in this study. The pur­
pose of using two hidden layers is to make the over­
all training process much more efficient. 

J.J? Model development stages 
Stage I: In this stage, an infinitely large reservoir 
with homogeneous and isotropic properties is con­
sidered. One producing well is placed at the center 
of the reservoir and each reservoir with different 
properties yields a different pattern. The analytical 
model of Anbarci & Ertekin (1991) is used to gener­
ate (he pressure transient data for training and testing 
the networks. 
Step I: Prediction of three parameters (k, <]) and t) 
Figure 4 shows the architecture of an ANN model 
for predicting porosity (<|>), permeability (k) and 
sorption time constant (x). In this ANN model, there 
are 44 input neurons including rw, q, h, pc, pj, T, |i, 
cs, z, and 12 pressure-time pairs. Functional links 
such as slope of parallel straight lines, the vertical 
distance between the straight lines and the time and 
pressure differences between the beginning and the 
end of the 

44 neurons 
Input layer 

Figure 4. Netwoik architecture for prediction of <b. k and T 

transition period are also included as input neurons. 
It is observed that these functional links are ex­
tremely useful in improving the accuracy of the pre­
dictions. There are 40 neurons in the first hidden 
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layer, 30 neurons in the second hidden layer and 3 
output neurons (k, <|>, x) in the output layer. 

Approximately 1000 training patterns are used 
during the training phase of the study. A total of 30 
patterns is used to test the capability of the model. 
Figure 5 shows the test results of the ANN model. 
The figures on the left show the quality of the match 
between the predicted values and the actual values of 
porosity, permeability and sorption time constant 
and the figures on the right display the relative errors 
encountered during these predictions. The shaded 
bands in Figure 5 show that for more than 80% of 
the pressure transient data analyzed, the predicted 
values are found to be within the ±5% error margin. 
Step II: Prediction of five parameters (k, <|>, PL, VL 

and x) 
In this step, five parameters (k, <|), PL, VL, T) are to 

be predicted simultaneously. The architecture is 
similar to the one used in Step I. The difference in 
the structures stems from the fact that PL and VL 

neurons are moved from the input layer to the output 
layer. Figure 6 shows the prediction results. It is 
found that predictions of PL and VL are not satisfac­
tory while the k, $ and T predictions match the actual 
values closely. Several networks were designed and 
tested, but none of them yielded a satisfactory si­

multaneous prediction of PL and VL. Various meth­
ods were also tried in presenting the training data to 
the network neurons, such as adding the spectral ra­
dius of the input matrix of pressure-time pairs and 
changing the order of output neurons tor VL and PL. 
The inability of the ANN in predicting PL and Vu 

simultaneously will be discussed later in this paper. 
Step III: Prediction of four parameters (k, <j>, PL or 
VL, and T) 
In this step, (wo cases are investigated as one of the 
Langmuir constants (PL or VL) together with poros­
ity, permeability and sorption time constant is pre­
dicted. In both cases, it is found that predicted re­
sults match the actual values quite closely. 
Case (a) Prediction ot k, 6), PL and x (VL is treated as 
an input) 

Figure 7 shows the architecture of the ANN de­
veloped to predict four parameters (k, <|>, T, PL). This 
architecture is quite similar to the one that predicts 
three outputs (k, (j>, t). The difference is that PL is 
treated as an output neuron instead of an input neu­
ron. At the same time, one functional link output 
neuron (<j>/k) is added to the output layer. It has been 
found that this functional link is very helpful in im­
proving the accuracy of predictions. 

Fıguıe 5 Prediction tesults of k. <|> and T 

306 



Fıgute6 Pıedıctıon lesults ot k, <j> PL VLanxlT 

Figure 8 shows the predictions ot tour parameters, k, 
<|>, PL and T. The shaded bands in Figure 8 show that 
for more than 80% of the pressure transient data 
analyzed the predicted values are within the ±10% 
error margin. 

Case (b) Prediction ofk, o). V, and T (PL is treated 
as an input) 

Figure 9 shows the ANN predictions ot tour pa­
rameters k, 0, VL and x 

The shaded bands in Figure 9 again indicate that 
tor more than 80% ot" the pressure transient data 
analyzed, the predicted values are within the ±20% 
error margin. 

Step II and Step III clearly show that ANNs are 
capable of predicting only one of the Langmuir con­
stants successfully In the forward solution protocol 
the PL and VL appeal together as a product Because 
ot the presence ot this product, a non-uniqueness is­
sue is encountered in the inverse solution analysis 
In othei woids, the information available from the 
pressuie transient data is not sufficient to provide an 
accurate signature resulting from either ot these two 
parameters. 

Figuie 7 Netwoik cuchiuxture tin piediclion ol k. ty PL and 
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Stage II The butt and face cleat systems in coal res 
ervoirs aie usually orthogonal and they often exhibit 
anisotropic peımeabılıty values These anisotropic 
permeability characteristics cannot be obtained via 
analytical forward solution methodology In this 
stage a numerical sımulatoı (Manık et al 2002) ıs 
used to generate pressure transient data from an infi­
nitely laige coalbed reservoir with homogeneous and 
anisotropic pioperty distribution It is obseived that 
the chaıacterıstıc two parallel straight lines disap-
peaied because of the anısotıopıc peımeabılıty 
Therefore neither vertical distance between these 

two straight lines nor slope of the parallel lines is 
available as input neurons However, some other 
characteristics such as the time and pressure differ­
ences between the beginning and the end of the tran­
sition zone still can be obtained from the data plot­
ted as discussed in Stage I 
Step I Prediction of four parameters (<|> kx, ky and x) 
In this step, tour parameters (<)>, k„ ky, T) are to be 
predicted simultaneously The ANN topology used 
in this stage is similar to the one presented in Stage 
I Fıguıe 10 shows the predicted results tor the 
atoiementioned foui parameters The prediction re-
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suits are generally acceptable although the relative 
error is considerable larger than the prediction re­
sults ot Stage I. The bands in Figure 10 show that 
around 80% of the pressure transient data analyzed, 
the predicted values are within the ±50% error mar­
gin. The prediction accuracy of the sorption time 
constant is still ranked highest with more than 80% 
analyzed patterns falling within the ±20% error mar­
gin. 

Siep II: Prediction of six parameters (<)>, kx, ky, PL, 
VL and T) 
In this step, six parameters (<|), k„, kv, PL VL, x) are 
predicted simultaneously. The purpose of this step is 
to investigate if the product effect of PL and VL still 
exists when data are generated by a numerical 
model. Figure 11 shows the prediction results. The 
prediction errors of Langmuir constants are observed 
to be much larger than that of other parameters. 
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Step III Pıedıctıon ot five parameters {§, kv ky, PL ky, VL, x The relative error ot Langmuii constants in 
01 VL, and T) both cases decreases when one ot them is treated as an 
Again two cases are tested in this step The direc- input neuron 
tional permeabilities, porosity, soıptıon time con- By analyzing the testing results ot Step II and Step 
stant with one ot the Langmuir constants are pre- III, it is found that the product etlect on the pressure 
dieted Figure 12 shows the predictions ot <|>, kx, ky, transient data still exists 
PL t and Figure 13 shows the predictions ot <|>, k„ 
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Table 3- Error comparisons. 

The predictions in this stage are obviously not as ac­
curate as that in the first stage. This is because some 
of the pressure transient data sets do not capture all 
of the characteristics of dual porosity reservoirs. The 
missing information may cause inaccurate predic­
tions. Another reason for inaccurate predictions is 
evolves from the increasing complexity of the prob­
lem in Stage II in which coal seams are considered 
to be anisotropic. 

4 DISCUSSION OF RESULTS 

There ate three important considerations in creating 
a generalized network. One is the choice of the 
number of the hidden layers and the number of neu­
rons in the hidden layers, the second one is selecting 
the training algorithms and the third one is the 
transfer functions used between the layers. More 
hidden layers and more neurons in layers are not al­
ways better than fewer, since more layers and neu­
rons may result in over-training and make the archi­
tecture more complicated. During this study, 
conjugate gradient method is used as the principal 
training algorithm because of the less stringent 
memory requirements as well as its rapid conver­
gence characteristics (Hagan et al. 1995). Transfer 
function between layers is also crucial in designing 
ANN models. Generally, the purelin (/(.») = .O is 
used in the output layer as the last transfer function 
while tansig (d ..., ( , ) or logsig 
( j ,.., ^ ) are used iff trfe'input layer or hid­
den layer tA'ydiiioglu et al. 2002). Furthermore, the 
convergence criterion should be chosen carefully, 
since while fine convergence criterion may lead to 
over-training, a coarse convergence criterion might 
result in incomplete training. Finally, providing a 
qualified data set and information to ANNs will in­
crease the accuracy of predictions. It is also ob­
served that in each stage of the development in­
creasing the number of training patterns improve the 
accuracy of predictions. 

Table 3 summarizes the error margins encoun­
tered for different models. The first four rows pres­
ent the isotropic cases and the last four rows are for 
anisotropic cases. Anisotropic cases are more com­
plex than the isotropic ones. The prediction accuracy 
of porosity is relatively satisfactory although it con­
sistently shows a decrease in anisotropic cases. The 
prediction accuracy for directional permeabilities 
decreases when the number of output neurons is in­
creased. However, the relative errors for the geomet­
ric average of the anisotropic permeabilities remain 
within an error margin of ±50%. The relative errors 
of the Langmuir volume and pressure constants 
reach the highest (+100%), when they are predicted 
simultaneously both in isotropic and anisotropic 
systems. However, the prediction quality of the 
Langmuir volume and pressure constants becomes 
better when they are predicted separately. Sorption 
constant is consistently the most accurately pre­
dicted (error is less then ±40% in anisotropic sys­
tem) sorption parameter. It is noted that the pre­
dicted values still follow the trends made up of 
target values well in anisotropic system although the 
relative error is larger than that of the corresponding 
isotropic system. 

5 CONCLUSIONS 

Soft computing protocols such as artificial neural 
networks have potential applications in in-situ 
evaluation of the coal seam properties. The ANN 
models designed during this study for predicting the 
transport and storage characteristics of coal seams 
are found to be promising as they are functioning 
effectively. The ANN structures presented in this 
paper cannot simultaneously predict the Langmuir 
volume and pressure constants with a high order of 
accuracy. 

This is attributed to the presence of the Langmuir 
volume and Langmuir pressure constants in the form 
of a product in the forward solution protocols used 
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in the generation of the pressure transient data. Fi­
nally, it should be noled thai for any ANN applica­
tion there is no perfect structure and a better struc­
ture can evolve by time. Following observations and 
conclusions are obtained from this study: 
l.Peimeabihty, porosity and sorption time constant 
properties can be effectively predicted for both iso­
tropic and anisotropic reservoirs using the artificial 
neural networks presented in this paper. 
2. It is difficult to predict the Langmuir pressure and 
volume constants simultaneously. 
3. Increasing the number of training patterns im­
prove the prediction capacity of the ANN models. 
4. The training data quality is critically important for 
accurate predictions. 
5. Functional links plays a pivotal role in structuring 
an appropriate architecture for the desired ANN 
model. 
6. Conjugate gradient method performs effectively 
as a training algorithm for the medium to large ar­
chitectures. 

NOMENCLATURE 

t, = compressibility, psia"' 
d = the vertical distance of the parallel lines 
h = reservoir thickness , ft 
k = permeability, md 
/:, = face cleat permeability, md 
k, = butt cleat permeability, md 
p = pressure, psia 
p, = pressure at the end of transition period, 

psia 
/;, = reservoir initial pressure, psia 
p, = pressure at the beginning of transition 

period, psia 
PL = Langmuir pressure constant, psia 
q = flow rate, MMSCF/d 

/„ = well bore radius, ft 
T = reservoir temperature, °F 

t = time, hr 
;,, = end of the transition period, hr 
U = beginning of the transition period, hr 
VL = Langmuir volume constant, SCF/TON 
z = compressibility factor 
A/r = pressure difference between the beginning and 

the end of the transition zone (Apc

2-Aps

:), 
psia" 

At = time difference between the beginning and the 
end of the transition zone (tL.-ts), hr 

0 = porosity, per cent 
/.( = viscosity, cp 
T = sorption time constant, hr 
pL. = density of the coal seam, g/cnv 
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UNIT CONVERSION 

Field units 
I ft 
I md 
1 psia 
I SCF/TON 
I MMSCF/d 

Metric units 
= 0.3048 m 
= lO'Vm2 

= 6.895 kPa 
= 2.86x10"'STD nrVkg 
= 2.86xl04STDmVd 
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