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1 INTRODUCTION 
Investments in mining projects and related 
industries are quite different from the other 
projects. All mining projects are associated 
with uncertainties in the future profitability. 
This uncertainty affects on the ore prices, 
operating cost, and so on. Investment in the 
mining projects is encountered a delay 
between decision making steps and 
investment procedures. A successful investor 
is the one who has the managerial flexibility 
and ability to delay, expand, contradict, or 
abandon the project. There are varieties of 
factors that assist the investor to have a right 
investment decision making. 

Valuation of the mining project is 
depending on the different factors such as the 
world ore prices, operating costs, and so on. 
DCF techniques are commonly used for 
economic evaluation of mining projects. 
However these techniques, due to the lack of 
consideration of the managerial flexibility, 
may underestimate some projects. In this 
paper, the real options theory is applied to 
meet theses flexibilities. 

2 LITERATURE REVIEW 

ROA has considered recently among some 
researchers and economists. They have 
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mentioned ROA as means of better assessing 
projects under uncertainty. 

Under uncertainty conditions, the ROA 
presents a better result comparison with the 
traditional DCF analyses such as NPV and 
the internal rate of return (IRR) methods. 
ROA is capable to embed the value of
managerial flexibility to change or revise the 
project course based on the new market 
conditions. Therefore, using the same 
discounting rate, the value of a project 
calculated by the ROA is always higher than 
that valuated by the traditional NPV method. 

Moyen et al. and Miller and Park 
explained uncertainty and profitability of the 
project as the cause of discrepancy between 
the ROA and the DCF estimates (Moyen et 
al., (1996)), (Miller et al., 2002). The first 
and likely most enforceable model for 
assessing options is Black and Scholes model 
(Black, 1973). However, as explained by 
Berridge and Schumacher (2004), the Black–
Scholes model is just applicable for valuing 
European options not for American options 
(Berridge, 2002). 

The lattice method presented is another 
common technique for valuing options (Cox 
et al., 1979). Barraquand and Martineau 
(1995) criticized the application of lattice 
method by offering limitations of which. 
They mentioned that the method becomes 
inapplicable when projects facing multiple 
uncertainty. (Barraquand et al., 1995) 
developed the finite difference method for
options valuation, however this method have 
the same liabilities as the lattice method 
(Brennan et al., 1978). 

The first time proposed by Boyle the 
Monte Carlo method based on simulation is 
used for valuing European options (Bpyle 
1977). Afterward an improved version of the 
Monte Carlo method was developed to value 
American options. Despite the previous 
techniques, the simulation-based techniques 
have better performance facing multiple
uncertainties. This means that both product 
volatility over time and cash flows variability 
can be embedded in the valuation (Longstaff 
et al., 2001). 

The ROA is not a new technique for 
natural resource investment applications. 

Since the first paper applying the ROA to 
value a simple copper mine was published by
Brennan and Schwartz, considerable work 
has been done employing the same concepts 
of uncertainty and operating flexibility. 
(Brennan et al., 1985) applied the ROA to 
value management flexibility to develop 
petroleum leases (Paddock et al., 1988). 

Trigeorgis addressed the consequence of 
embedding the distinct real options on the 
value of a natural resource extraction project 
(Trigeorgis, 1993). Using data from 
Canadian copper mines illustrated an 
analogy between the NPV method and the 
option valuation method. This comparison
shows that the NPV method underestimates 
mining projects (Moyen et al., 1996). 
McCarthy and Monkhouse offered a 
trinomial lattice method for valuing a copper 
mine have both wait and abandon options 
(McCarthy, 2003). 

Abdel Sabour and Poulin (2006) and 
Roussos G. Dimitrakopoulos, Sabry A. 
Abdel Sabour (2007) are other significant 
researchers who conducted assessing mine 
plans under uncertainty(Sabour et la., 2007). 
Graham A. Davis and Alexandra M. 
Newman presented a Modern Strategic Mine 
Planning using ROA technique (Graham et 
al., 2008). S Shafiee1, E Topal and M 
Nehring used an adjusted Real Option 
Valuation to maximize mining project value 
using Century Mine case study (Shafiee et 
al., 2009). Luis Martinez using real options 
presented a project valuation for open pit 
mining risks and merged econometric 
techniques (Martinez, 2011). 

3 TRADITIONAL EVALUATION 
METHOD 

DCF and the associated NPV techniques 
have traditionally provided the major tools 
for project evaluation. The discounted cash 
flow formula, equation (1), is derived from 
the future value formula for calculating the 
time value of money and compounding 
returns. 

 

       (1) 
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Where NPV is the net present value, C0 to 

CT are the cash flows expected through the 
project’s life (T) and r is discounting risk-
adjusted rate. 

NPV analysis evaluates the cash flows 
forecasted to be delivered by a project by 
discounting them back to the present using 
the time span of the project and the firm's 
weighted average cost of capital. If the result 
is positive, then the firm should invest in the 
project. If negative, the firm should not 
invest in the project. In addition Internal Rate 
of Return (IRR) cloud be calculated by 
giving the equation equal zero.   

DCF is used by analysts to evaluate 
projects. However, this tool has certain 
limitations. For example, if the project's cash 
flows and decisions are likely faced to many 
uncertainties (where managers have the 
flexibility to change the course of the 
project), part of the value related to these 
options could be not incorporated in the 
valuation process. 

4 REAL OPTION APPROACH 

Nowadays management is looking for a way 
to reduce uncertainty and to assess the 
impact of managerial uncertainty on project. 
ROA has been developed to promote this 
goal. This approach has provided a basis for 
the development in financial and decision 
making analyses. ROA is one of the modern 
valuation methods that provide a tool to 
adapt and revise mining projects under 
uncertainty and future variable movements. 

A lot of progresses that have been done in 
the Real Option literature have changed the 
way of thinking about an investment 
opportunity. During project management, 
managers may do several choices about 
project characteristics every time new 
information from market is available. ROA 
is the way to respond to market changes. 
This possibility that managers have to adapt 
their decisions to the change of market has 
value that must be considered during the 
decision making process. Therefore, this
flexibility creates “options” that increase the 
value of the project and determines the

failure of the traditional technique (such as 
NPV). 

ROA accounts for a range of possible 
outcomes over the life of a project using 
stochastic processes and calculates a 
“composite” options value for a project, 
considering only those outcomes that are 
favorable (i.e., options are exercised) and 
ignoring those that are not (letting the 
options expire). This assumes that the 
decision makers will always take the value-
maximizing decision at each decision point 
in the project life cycle. Whereas DCF 
accounts for the downside of a project by 
using a risk-adjusted discount rate, ROA 
captures the value of the project for its 
upside potential by accounting for proper 
managerial decisions that would presumably 
be taken to limit the downside risk. Table 1 
summarizes the major differences between 
DCF and ROA. 

4.1 Options 

As discussed if there is large uncertainty 
related to the project cash flows and 
contingent decisions are involved, where 
mangers have flexibility to change the course 
of the project, ROA can be applied for 
project valuation using different options.  In 
this research several real options embedded 
virtually in every project are investigated and 
used to calculate the generated additional 
value of managerial flexibility. Following 
options are the focus of this paper: 

 

 Option to expand 
 Option to contract 
 Option to wait 
 Option to abandon 

 
For every mentioned options, this research 

focuses on one or two aspects (such as 
practical issues, input parameter variability, 
etc.) that are most relevant to that option 
type. For example, the option to expand issue 
involves how the option size influences the 
option value. Using the option to contract of 
the scale, the impact of the volatility factor 
on the option value is highlighted.  
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Table 1: the major differences between DCF and ROA 

Real Options Analysis  Discounted Cash Flow 

Recognizes the value in managerial flexibility to 

alter the course of a project 

 All or nothing strategy. Does not capture the value 

of managerial flexibility during the project life 

cycle. 

Uncertainty is a key factor that drives the option’s 

value. 

 Uncertainty with future project outcomes not 

considered. 

The long-term strategic value of the project is 

considered because of the flexibility with decision 

making. 

 Undervalues the asset that currently (or in the near 

term) produces little or no cash flow. 

Payoff itself is adjusted for risk and then discounted 

at a risk-free rate. Risk is expressed in the 

probability distribution of the payoff. 

 Expected payoff is discounted at a rate adjusted for 

risk. Risk is expressed as a discount premium. 

Investment cost is discounted at the same rate as the 

payoff, that is, at a risk-free rate. 

 Investment cost is typically discounted at the same 

rate as the payoff, that is, at a risk-adjusted rate. 
   
 
The analysis of the option to wait 

discusses how leakage of asset value can be 
accounted for in the options calculations. 
And finally, in the case of the option to 
abandon how to solve the options problem 
for various strike prices is illustrated. Indeed 
How to calculate the probability of 
exercising the option of abandoning the 
project is presented 

4.1.1 Option to expand 

Option to expand is usual in any project. In 
some cases, the initial NPV can be marginal 
or even negative, but when growth 
opportunities with high uncertainty exist, the 
option to expand can provide a considerable 
value. Without regarding to an expansion 
option, great opportunities may be 
overlooked. Investment for expansion is the 
strike price that will be acquired as a result 
of exercising the option. The option would 
be activated if the expected payoff is greater 
than the strike price. 

4.1.2 Option to contract 

Once a project has been developed, 
management may have the option to 
decelerate the production rate or change the 
scale of production. In a project, there might 

be the option to decrease production by 
contemplating scaling down its operations by 
either selling or outsourcing one or more 
plants to gain efficiencies through 
stabilization. 

The option to contract is significant in 
today’s competitive marketplace, where 
companies need to downsize or outsource 
swiftly as external conditions change. 
Organizations can hedge themselves through 
strategically created options to contract. The 
option to contract has the same 
characteristics as a put option, because the 
option value increases as the value of the 
underlying asset decreases. 

4.1.3 Option to wait 

Investing in a mining project has much in 
common with exercising a financial option. 
First, both are at least partially irreversible. 
Second, timing is crucial. Indeed, taking an 
irreversible action means forfeiting the 
option to wait for new information 
concerning market conditions. (Margaret E. 
Slade, 2000). Option to defer investment, an 
opportunity to invest at some point in the 
future, may be more valuable than an 
opportunity to invest immediately. 

 A deferral option gives an investor the 
chance to wait until conditions become more 
favorable, or to abandon a project if 
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conditions deteriorate. Such options allow a 
firm to delay an investment until it's sure 
about other relevant issues. 

4.1.4 Option to abandon 

Management may decide to abandon the 
project and sell any accumulated capital 
equipment in the open market. Alternatively, 
it may sell the project, or its share in the 
project, to another company whose strategic 
plans make the project more attractive. 
Selling for salvage value would be similar to 
exercising an American put option. If the 
value of the project falls below its liquidation 
value, the company can exercise its put 
option. 

To clarify the mechanism of this valuation 
process, assume that the only operating 
flexibility available to the mine manager is to 
close the mine early. This option is 
irreversible. At any time the decision to 
abandon the mine is made by comparing the 
expected value of all future cash flows and 
the abandonment cost at that time. 

5 MONTE CARLO SIMULATION 

To asses real options value partial 
differential equations, dynamic 
programming, and simulation methods can 
be applied. In this paper referred to Monte 
Carlo simulation method. The simulation 
method for solving real options problems is 
similar to the Monte Carlo technique for 
DCF analysis. Traditional Monte Carlo 
simulation has been considered a powerful 
and flexible tool for capital budgeting for a 
very long time. It involves simulation of 
thousands of paths the underlying asset value 
may take during the option life given the 
boundaries of uncertainty defined by the 
volatility of the asset value. 

6 PRACTICAL APPLICATION: 
FEASIBILITY STUDY OF A MINING 
PROJECT UNDER UNCERTAINTY 

The final goal of mine managers and 
decision makers is to make decisions that 
seem to be the optimum based on the 
information available at the designing time. 

 In this study, the applicability and 
usefulness of the simulation-based ROA 
method is investigated. Proposed method is 
applied to choose the best mine plan among 
different feasible options.  

Thought five-year life of options, Iranian 
Kahnoj Titan is selected to perform the 
reality examination. Kahnoj Titan faces a 
myriad of uncertainties and decision-making 
flexibilities.  Production of this industry 
plant consists of titan pigment, titan 
magnetite concentrate, and sorrel iron. By 
using the traditional DCF technique this 
project was evaluated (Table 2). As it shown 
in the table, the NPV is negative and the IRR 
is lower than the risk rate. This situation 
provides a suitable platform to conduct the 
real options valuation method on this project. 

 
Table 2: DCF technique analysis of the 
project 

Year 
Cash Flows 

 ($) 
Ye

ar 
Cash Flows 

($) 

-3 -7,975,775 9 6,425,675 

-2 -8,222,920 10 6,447,380 

-1 -712,316 11 5,289,546 

0 1,858,005 12 5,280,964 

1 5,136,277 13 5,273,607 

2 5,501,333 14 5,267,270 

3 6,277,526 15 5,261,785 

4 6,425,675 16 5,257,013 

5 6,425,675 17 5,252,909 

6 6,425,675 18 5,249,475 

7 6,425,675 19 5,247,448 

8 6,425,675 20 9,760,454 

  Risk-Adjusted Rate 25% 

  Net Present Value (NPV) -1,695,397 $ 

  Internal Rate of Return (IRR) 22% 

7 SOLVING THE PROBLEM USING 
THE REAL OPTIONS VALUATION 
MONTE CARLO SIMULATION-BASED 

First the input parameters required to 
conduct the simulations are defined: 

 Current value of the underlying 
asset (So) 

  
 Strike price (X) 
 Option life (T) 
 Risk-free rate corresponding to the 

option life (r) 
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 t) 

7.1 Estimation of current value of the 
asset 

With the real options, the current value of the 
underlying asset value is estimated from the 
cash flows that asset is expected to generate 
over the project life. In the other hand, the 
present value of the expected free cash flows 
based on the DCF calculation is regarded the 
value of the underlying asset. First, the future 
revenues are calculated based on the number 
of units expected to be sold, price per unit, 
operation cost, and then it discounted to the 
present time by an appropriate risk adjusted 
discount rate. 

7.2 Calculating volatility factor 

Volatility refers to the variability of the asset 
value and as an important input variable; it 
can have a significant impact on the option 

options models. It is the volatility of the 
product prices, which have a significant 
impact on the cash flow returns. 

In this reach the volatility factor for each 
product is measured as the standard deviation 
of the natural logarithm of product prices. 
And then according to the weighted 
proportion of each product in cash flows 
returns, the volatility factor is calculated. 

7.3 Exercise or strike price 

In the real options world, exercising an 
option typically involves development of a 
product, construction of a new facility, 
launching a large marketing campaign, etc., 
which does not happen in an instant but in 
fact takes a long time. The strike price or the 
investment cost directly impacts the option 
value. 

Dealing with expansion or contraction 
options  in this research Approximate costs 
for exercising the options  can be obtained 
through  the rule of six-tenths (equation 2). 
As shown in table, the cost of a similar item 
of different size or capacity (double or half 
capacity) for mentioned options is 
developed. 

 

                                (2) 

 
Where CB is the approximate cost ($) of 

equipment having size SB (cfm, Hp, ft2, or 
whatever), CA is the known cost ($) of 
equipment having corresponding size SA 
(same units as SB), SB/SA is known as the 
size factor (dimensionless). 

In relation to the abandon option if the 
project payoff is not attractive, the option to 
abandon the project is executable. Exercising 
the project abandon could minimize the 
losses by either selling off the project’s 
salable equipment or reducing production 
costs. This option has the characteristics of a 
put option. The strike prices of these options 
are presented in Table 3. 

7.4 Simulation 

In this study, The Monte Carlo simulation is 
used to simulate the thousands paths of the 
uncertain asset values, defined by equation 
(3) through randomly and changing values. 
To simulating every time increment asset 
value, the underlying asset value is again 
calculated for the next time increment using 
the same equation. In this fashion, asset 
values for each time step are calculated until 
the end of the option life. Finally, by 
applying the decision rule, maximization of 
the value, the value at the end of the fifth 
year is compared with strike price of each 
option. 

 If this value was more than the cost of 
exercising the option, the option value for 
that simulation would be the difference 
between the asset value and its strike price. 
Otherwise, that option would be worthless 
and thus, zero value is allocated for it. The 
Option values for each simulation are 
discounted to their current values using a 
risk-free rate and ultimately the mean of 
which is considered the real option value. 

Input parameters at table (5) are 
determined for each real world option. The 
asset value, which may has fluctuations over 
the option life, is defined by the following 
equation. 
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St = St-1 +St-1 )              (3) 

 
Where St and St–1 are the underlying asset 

values at time t and time t–
is the volatility of the underlying asset value; 

normal distribution with mean of zero and a 
variance of 1. 

In this research a command-based 
MATLAB simulation was conducted using 
the volatility factor. A Path is created for 
each simulated underlying asset value over 
the option life. Running 100,000 trials 
develops millions simulated value paths. The 
average of the option values from such 
numbers of trials in the case study is the 
value of the option at the end of five years. 

Table 6 shows the results of the simulation 
using the first 20 trials as a sample. The 
probability of exercising the options, 
expansion, contraction and abandonment of 
the project, are 0.32%, 78.02%, 99.97% of 
the time respectively. And the estimated 
average values for each mentioned option are 
13,407,  221,605,352 and 19,937,127dollars 
respectively. The added values could be 
substantial for a non-economic project close 
to break point estimated by DCF analysis 
(whit the net present value of -1,695,397 
dollars).  

8 CONCLUSION 

This paper proposed an approach to 
investigate the role of the real options 
valuation in a particular mine, Titan Kahnoj 
plant. Using the ROA provides incorporating 
managerial flexibility to make investment 
decisions. 

To examine the performances of the ROA 
versus the traditional NPV method and its 
advantage, a command-based Monte Carlo 
simulation thought MATLAB software was 
carried out. Both methods were applied for 
valuation of the case study. The managerial 
flexibility to change the project course was 
considered in the form of the main options 
(expansion, contraction and abandonment 
options). 

This research can be suitable to discuss of 
the implementation and management 
decisions using real options to go out from 
the current situation in similar projects. 
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APPENDIX 

Table 3: Calculation of the proportion of each product in cash flow returns and asset value. 

Year 

Income of 

Sorel Iron 

 ($) 

Income of 

Titan Pigment 

($) 

Income of 

Titan magnetite 

concentrate ($) 

Operational Cost 

($) 

Cash flows 

 ($) 

0 14,400,000 21,000,000 1,130,000 2,481,296.90 33,048,703 

1 2,880,000 42,000,000 2,260,000 3,481,269.90 42,177,410 

2 3,240,000 47,250,000 2,542,500 4,962,589.72 47,449,586 

3 3,600,000 52,500,000 2,825,000 5,582,913.54 52,721,763 

4 3,600,000 52,500,000 2,825,000 6,203,237.36 52,721,763 

5 3,600,000 52,500,000 2,825,000 6,203,237.36 52,721,763 

6 3,600,000 52,500,000 2,825,000 6,203,237.36 52,721,763 

7 3,600,000 52,500,000 2,825,000 6,203,237.36 52,721,763 

8 3,600,000 52,500,000 2,825,000 6,203,237.36 52,721,763 

9 3,600,000 52,500,000 2,825,000 6,203,237.36 52,721,763 

10 3,600,000 52,500,000 2,825,000 6,203,237.36 52,721,763 

11 3,600,000 52,500,000 2,825,000 6,203,237.36 52,721,763 

12 3,600,000 52,500,000 2,825,000 6,203,237.36 52,721,763 

13 3,600,000 52,500,000 2,825,000 6,203,237.36 52,721,763 

14 3,600,000 52,500,000 2,825,000 6,203,237.36 52,721,763 

15 3,600,000 52,500,000 2,825,000 6,203,237.36 52,721,763 

Asset value (S0)   179,764,920.45
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Table 4: calculation of the volatility factor. 

Year Pt ($/ton) Ratio(Pt/Pt-1) ln Ratio Deviation Deviation^2 
Volatilit

y 

   Titan Magnetite Concentrate (T.M.C.)    

2006 53.9      

2007 59.7 1.108 0.044 -0.017 0.000  

2008 70.5 1.181 0.722 0.011 0.000  

2009 93 1.319 0.120 0.059 0.003  

2010 90 0.968 -0.014 -0.075 0.006  

2011 109 1.211 0.083 0.022 0.000  

Mean   0.061  0.010 0.045 

   Titan Pigment (T.P.)     

1992 2010      

1993 1920 0.955 -0.020 -0.110 0.012  

1994 1850 0.964 -0.016 -0.106 0.011  

1995 1910 1.032 0.014 -0.076 0.006  

1996 1890 0.990 -0.005 -0.095 0.009  

1997 1760 0.931 -0.031 -0.121 0.015  

1998 1840 1.045 0.019 -0.071 0.005  

1999 1890 1.027 0.012 -0.079 0.006  

2000 1880 0.995 -0.002 -0.093 0.009  

2001 1890 1.005 0.002 -0.088 0.008  

2002 1800 0.952 -0.021 -0.111 0.012  

2003 1830 1.017 0.007 -0.083 0.007  

2004 1780 0.973 -0.012 -0.102 0.010  

2005 2180 1.225 0.088 -0.002 0.000  

2006 2150 0.986 -0.006 -0.096 0.009  

2007 1870 0.870 -0.061 -0.151 0.023  

2008 2210 1.182 0.073 -0.018 0.000  

2009 2210 1.000 0.000 -0.090 0.008  

2010 2320 1.050 0.021 -0.069 0.005  

2011 2856 1.231 0.090 0.082 0.007  

Mean   0.008  0.162 0.092 

   Sorrel Iron (S.I.)      

2001 103      

2002 107 1.039 0.017 -0.052 0.003  

2003 127 1.187 0.074 0.006 0.000  

2004 184 1.449 0.161 0.093 0.009  

2005 257 1.397 0.145 0.077 0.006  

2006 259 1.008 0.003 -0.065 0.004  

2007 313 1.208 0.082 0.014 0.000  

2008 498 1.591 0.202 0.134 0.018  

2009 343 0.689 -0.162 -0.230 0.053  

2010 422 1.230 0.090 0.022 0.000  

Mean   0.068  0.093 0.102 

The exercised volatility 25.39 %     
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Table 5: Monte Carlo simulation input parameters and results. 

Table 6: The First 20 Simulation Trials for abandonment option. 

 
 

1 179764920 172913321 223982577 209399269 195131858 186063520 0 0 

2 179764920 299286843 387680012 362438508 337743775 322047851 133097519 54113413 

3 179764920 293019886 379562134 354849178 330671543 315304287 126353955 51371684 

4 179764920 229181480 296869310 277540411 258630206 246610917 57660586 23443045 

5 179764920 237125038 307158967 287160117 267594474 255158590 66208258 26918269 

6 179764920 159619636 206762656 193300521 180129998 171758839 0 0 

7 179764920 274988539 356205301 333013088 310323254 295901641 106951309 43483157 

8 179764920 222654780 288414977 269636532 251264857 239587857 50637526 20587682 

9 179764920 162315660 210254939 196565425 183172448 174659898 0 0 

10 179764920 192571405 249446597 233205349 217315912 207216617 18266285 7426517 

11 179764920 131220870 169976428 158909412 148082126 141200324 0 0 

12 179764920 236593133 306469967 286515977 266994222 254586234 65635902 26685566 

13 179764920 234670086 303978955 284187153 264824073 252516937 63566605 25844253 

14 179764920 209330635 271155598 253500896 236228623 225250400 36300068 14758506 

15 179764920 175360807 227152918 212363191 197893834 188697139 0 0 

16 179764920 159994033 207247629 193753919 180552503 172161710 0 0 

17 179764920 144037283 186578117 174430180 162545387 154991436 0 0 

18 179764920 186972036 242193477 226424473 210997050 201191411 12241080 4976852 

19 179764920 244112481 316210124 295621961 275479771 262677434 73727103 29975203 

20 179764920 178939949 231789145 216697558 201932879 192548477 3598146 1462897 
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ABSTRACT Underground mining method (UMM) selection is  the first and one of the most 
crucial decisions that should be made by mining engineers. In this regard some of the 
parameters such as geological and geotechnical properties, economic parameters and 
geographical factors are involved. Choosing a suitable underground mining method to extract 
mineral deposits is very important in terms of the economics, safety and the productivity of 
mining operations. This paper attempts to demonstrate the calculation of the weighting 
factors for each selected underground mining method. In practice, underground mining 
method could be selected using multiple criteria decision making (MCDM) techniqes and 
decision makers have always some difficulties in making the right decision in the multiple 
criteria environment. Most multi-criteria methods focus on ranking and selecting from a set 
of alternatives. In this research Jajarm bauxite mine was selected as a case study and optimal 
method of mining for this mine was proposed using fuzzy VIKOR technique. The the fuzzy 
VIKOR technique was developed to solve MCDM problems with conflicting and non-
commensurable criteria assuming that compromising is acceptable to resolve conflicts. In this 
technique also importance weights of decision makers’ opinions have considered different. 
Finally according to this technique the most appropriate mining methods for this mine were 
ranked. 

 

Keywords: Multi-criteria decision making, VIKOR, Fuzzy logic, mining method selection 
 
 

1 INTRODUCTION 

Relaible selection of UMM is necessary to 

optimal design of mine (Alpay & Yavuz, 

2009). 

To make a suitable decision on 

underground mining method selection, all 

known criteria related to the problem should 

be analyzed. Although an increasing in the 

number of related criteria makes the problem 

more complicated, this may also increase the 

correctness of the decision. Due to the 

arising complexity in the decision process, 

many conventional methods are able to 

consider limited criteria and may be 

generally deficient. Therefore, it is clearly 

seen that assessing all of the known criteria 

connected to the mining method selection by 

combining the decision making process is 

extremely significant (Hartman & 

Mutmansky, 2002). 

Once selected a mining method, it is 

nearly impossible to change it owing to the 

rising costs and mining losses, it is very 

important to re-analyze the decision made 

before carrying it out (Naghadehi & Ataei, 

2009). 

In this sensitively analysis was generally 

used on the final decision (Alpay & Yavuz, 

2009). 

The aim of this paper is to compare the 

many different geological, geotechnical, 

economical and technical aspects in the 

selection of the most appropriate 

underground mining method for Jajarm 

A Fuzzy VIKOR Technique to Selection of Optimum 
Underground Mining Method for Jajarm Bauxite Mine, Iran 

 

A. Jalili, K. Shahriar, A. Sadri 

Department of Mining and Metallurgical Engineering, Amirkabir University of Technology 
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Bauxite Mine in Iran, with reference to some 

different extraction methods. The 

comparison has been performed with the 

combination of the VIKOR method and 

fuzzy logic (Fuzzy VIKOR Method). 

In the multiple criteria decision making 

(MCDM) problems, since that the valuation 

of criteria leads to diverse opinions and 

meanings, each attribute should be imported 

with a specific importance weight (Chen, 

Tzeng & Ding, 2003). A question rises up 

here and that is ‘‘how this importance 

weight could be calculated’’? In literature, 

most of the typical MCDM methods leave 

this part to decision makers, while 

sometimes it would be useful to engage end-

users into the decision making process. To 

obtain a better weighting system, weighting 

methods are usually divided into two 

categories: subjective methods and objective 

methods (Wang & Lee, 2009). While 

subjective methods determine weights solely 

based on the preference or judgments of 

decision makers, objective methods utilize 

mathematical models, such as entropy 

method or multiple objective programming, 

automatically without considering the 

decision makers’ preferences. The approach 

with objective weighting is particularly 

applicable for situations where reliable 

subjective weights cannot be obtained 

(Deng, Yeh & Willis, 2000). On the other 

hand, new researches entail new MCDM 

approaches such as VIKOR. 

VIKOR is a helpful tool in multi-criteria 

decision making (MCDM), the obtained 

compromise solution could be accepted by 

the decision makers because it provides a 

maximum group utility (represented by min 

S,) of the majority, and a minimum of the 

individual regret (represented by min R) of 

the opponent. 

2 VIKOR TECHNIQUE  

Vlsekriterijumska Optimizacija I 

Kompromisno Resenje (i.e. VIKOR) method 

was developed by Opricovic in 1998 for 

multi-criteria optimization of complex 

systems (Opricovic & Tzeng, 2002). VIKOR 

focuses on ranking and sorting a set of 

alternatives against various, or possibly 

conflicting and non-commensurable, 

decision criteria assuming that 

compromising is acceptable to resolve 

conflicts. Similar to TOPSIS as a MCDM 

method, VIKOR relies on an aggregating 

function that represents closeness to the 

ideal, but unlike TOPSIS, introduces the 

ranking index based on the particular 

measure of closeness to the ideal solution. 

This method uses linear normalization to 

eliminate units of criterion functions 

(Opricovic & Tzeng, 2004). 

The VIKOR method was developed for 

the multi-criteria optimization of complex 

systems. It determines the compromise 

ranking list and the compromise solution. 

The weight stability intervals for the 

preferred stability of the compromise 

solution can be obtained from the initial 

weights given by the AHP in the traditional 

method. This traditional method focuses on 

ranking and selection from a set of 

alternatives in cases of conflicting criteria. It 

introduces a multi-criteria ranking index 

based on the particular measure of 

‘‘closeness’’ to the ‘‘ideal’’ solution (Chiu 

& Tzeng, 2012). The VIKOR method began 

with the form of Lp-metric, which was used 

as an aggregating function in a compromise 

programming method and developed into the 

multi-criteria measure for compromise 

ranking. We assume the alternatives are 

denoted as  A1,A2, . . .,Ai , . . . , Am. wj is the 

weight of the jth criterion, expressing the 

relative importance of the criteria, where j = 

1, 2, . . ., n, and n is the number of criteria. 

The rating of the jth criterion is denoted by 

fij for alternative Ai. The form of Lp-metric is 

formulated as follows: 
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( ) / ( )

p
n

p
p

i j j ij j j

j i

L f f f f             (1) 

 

1 p ; i=1,2,…,m 

 

The VIKOR method is not only generated 

with the above form of Lp-metric, but also 

uses 1p

iL  (as Si in Eq. (2)) and p

iL  (as Ri in 

Eq. (3)) to formulate the ranking measure. 

(chen et al.,2011; Chiu & Tzeng, 2012). 

 

1

1

( ) / ( )
n

p

i i j j ij j j

j

L S f f f f                (2) 

 

max ( ) / ( )p

i i j j j ij j jL R f f f f         (3) 

 

When p is small, the group utility is 

emphasized (such as p=1) and as p increases, 

the individual regrets/gaps receive more 

weight(Chiu & Tzeng,2012). In addition, the 

compromise solution mini 
p

iL will be chosen 

because its value is closest to the 

ideal/aspired level. Therefore, mini Si 

expresses the minimization of the average 

sum of the individual regrets/gaps and mini 

Ri expresses the minimization of the 

maximum individual regret/gaps for 

prioritizing the improvement. In other 

words, mini Si emphasizes the maximum 

group utility, whereas mini Ri emphasizes 

selecting minimum among the maximum 

individual regrets. Based on the above 

concepts, the compromise-ranking algorithm 

VIKOR consists of the following steps. 

Step 1: Determine the best jf  , and the 

worst jf  values of all criterion functions, j = 

1, 2, . . ., n. If we assume the jth function 

represents a benefit, then jf =maxi ijf   (or 

setting an aspired level) and jf = mini ijf  (or 

setting a tolerable level). Alternatively, if we 

assume the jth function represents a 

cost/risk, then jf =mini ijf  (or setting an 

aspired level) and jf = maxi ijf  (or setting a 

tolerable level).  

Step 2: Compute the values Si and Ri, i = 1, 
2, . . .,m, using the relations Eq.(4)&(5). 

Step 3: Compute the Qj values for i=1, 2,…, 
m with the relation Eq.(6). 

1

( ) / ( )
n

i j j ij j j

j

S f f f f                          (4)  

max ( ) / ( )i j j j ij j jR f f f f                     (5) 

* *

* *
(1 )

i

i iS S R R
Q

S S R R
                     (6) 

 
Where, *

i iS Min S , i iS Max S , *

i iR Min R

, i iR Max R  and 0 v 1, where v is 

introduced as a weight for the strategy of 

maximum group utility, whereas  is the 

weight of the individual regret. In other 

words, when v > 0.5, this represents a 

decision-making process that could use the 

strategy of maximum group utility (i.e. if v is 

big, group utility is emphasized), or by 

consensus when , or with veto when v 

< 0.5 ( Opricovic,1998 & Kackar 1985). 

Step 4: Rank the alternatives, sorting by the 

value of {Si, Ri, and Qi|i =1, 2, . . .,m}, in 

decreasing order. Propose as a compromise 

the alternative (A(1)) which is ranked first by 

the measure min{Qi|i = 1, 2, . . .,m} if the 

following two conditions are satisfied 

(Huang et al., 2009): 

C1. Acceptable advantage: Q(A(2) (1)) 

1/(m 1), where A(2) is the alternative with 

second position in the ranking list by Q; m is 

the number of alternatives. 

C2. Acceptable stability in decision 

making: Alternative A(1) must also be the 

bestranked by {Si or/and Ri|i = 1, 2, . . .,m}. 

If one of the conditions is not satisfied, 

then a set of compromise solutions is 

proposed, which consists of: 
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Alternatives A(1) and A(2) if only 

condition C2 is not satisfied. 

Alternatives A(1),A(2), . . . , A(M) if 

condition C1 is not satisfied. A(M) is 

determined by the relation Q(A(M))  Q(A(1)) 

< 1/(m  1) for maximum M (the positions 

of these alternatives are close. 

The compromise solution is determined by 

the compromise-ranking method; the 

obtained compromise solution could be 

accepted by the decision makers because it 

provides maximum group utility of the 

majority (represented by min S, Eq. (4)), and 

minimum individual regret of the opponent 

(represented by min R, Eq. (5)). 

The VIKOR algorithm determines the 

weight stability intervals for the obtained 

compromise solution with the input weights 

given by the experts.( Opricovic, 1998) 

3 FUZZY LOGIC 

A linguistic variable is defined as a variable 

whose values are not numbers, but words or 

sentences in natural or artificial languages. 

The concept of a linguistic variable appears 

as useful means for providing approximate 

characterization of phenomena that are too 

complex or ill-defined to be described in 

conventional quantitative terms (Zadeh, 

1965). 

The use of linguistic variables enables 

Decision Makers (DMs) to specify both the 

importance associated with each of a set of 

criteria, and the preference with respect to a 

number of strategic criteria which impact the 

selection and justification of several 

alternatives. The value of a linguistic 

variable can be quantified and extended to 

mathematical operations using fuzzy set 

theory (Zadeh, 1975). 

A fuzzy number is a special fuzzy set F = 

{x  R| f (x) }, where x takes its values on 

the real line  1  

and f (x)  is a continuous mapping from 1  

to the close interval [0,1]. A triangular fuzzy 

number can be denoted as A=[a1,a2,a3]  

(where - 1 2 3  and a1,a2,a3 R  ) 

and its membership function ( )Af x   :  1  

[0, 1] can be given as: 

 

 
1 2 1

3 2 3

( ) / ( )

( ) ( ) / ( )

0

A

x a a a

f x x a a a

Otherwise

  

 

where b1 2 3, b1and b3 stand for the lower 

and upper value of the support of  A , 

respectively, and b is the mid-value of  A. 

 The main operational laws for two 

triangular fuzzy numbers  A =[a1,a2,a3] and 

B  =[b1,b2,b3] and one no fuzzy number 

n=[n1,n2,n3] are as follows (Kaufmann & 

Gupta, 1991): 

 

1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

( ) [ , , ]

( ) [ , , ]

( ) [ , , ]

( ) [ , , ]

A B a b a b a b

A B a b a b a b

A B a b a b a b

A n a n a n a n

!

3.1 Defuzzification 

Fuzzy numbers can be regarded as systems 

with numerical input and numerical output. 

Internally these systems work with fuzzy 

values, which have to be mapped to non-

fuzzy (crisp) values after processing. This 

conversion is called defuzzification. In this 

paper the mean value method is used for 

defuzzification. 

A fuzzy number A =[a1i,a2i,a3i] can 

always be given by its corresponding left 

and right representation of each degree of 

membership: 
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Figure 1.A triangular fuzzy number iA   

Mean value method for defuzzification: 

 

1

2
i L i R iS A S A S A

1
iS A S A S A

1
i L i R ii L i R iS AS Ai L i Ri L i Ri L i R                            (7) 

                          

(
2 3

1 2

2 2

1
( ) ( )

2

i i

i i

a a

i i i i i

a a

S A a f x a f x
1

S A
1

i i i ii i i ia fa fa fa fa fa fa fa fi i i ii i i ii i i ii i i ia fa fa fa fi i i ii i i ii i i ii i i ii i i i     (8) 

 

4 FUZZY VIKOR TECHNIQUE  

Assumptions and method steps are as 
follows: 

K = Number of decision makers, where 

K=1, 2,…,k. 

i= Number of alternatives, where i=1, 

2,…,m. 

j= Number of criteria, where j=1, 2,…,n. 

 
Step 1: Making matrix of criteria- decision 

makers. 

Form a group of decision makers, 

determine the evaluation criteria and feasible 

alternatives. k decision makers use the 

linguistic variables, such as very low, low, 

medium, high and very high (the 

corresponding fuzzy numbers of linguistic 

terms are shown in Table 1)  to assess the 

importance weight of criteria. Triangular 

fuzzy numbers for importance weight of the 

criteria are shown in Figure 2. 

Hence the  matrix of criteria- decision 

makers can be written as Figure 3. 

 

 

 

Figure 2. Triangular fuzzy numbers for 

importance weight of the criteria 

Table 1. Linguistic variables for the 

importance weight of criteria 

Symbol Linguistic 
terms 

Triangular fuzzy 
number 

very high ( , , )L M R

high ( , , )L M R

medium ( , , )L M R

low ( , , )L M R

very low ( , , )L M R

 

1 2

11 12 1 1
1

21 22 2 22

1 2

k j

k

k

n n n nk n

D D D

x x xC

C x x x

C x x x

k jDk j

1 1k1 11 1x1 1k1 11 1x1 11 11 1x

2 2k2 22 2x

nk nxnk nx

 

Figure 3. Matrix of criteria- decision makers 

 jkx The rating of the criteria jC  with 

respect to decision maker kD . 

 j is the importance weight of the jth 

criterion holds. 

wk is the importance weight of  decision 

makers opinions, where [0,1]kw . 
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1 2

1 1 2 2

1 2

, , , ,

,

, , ,

L L L

M

j j jk

j j j k jk

R R R

j j j

M

k

M

min x x x

w x w x w x

max x x x

L L Lx xx xx xx xx xL L L, ,j j jk, ,, ,, ,, ,, ,j j jk, ,, ,x xj j jkj j jk, ,, ,

k jk

Mw xk jkk jkk jkk jkw xk jkk jkj

Mw x1 1 2 21 1 2 21 1 2 21 1 2 2

Mw x1 1 2 21 1 2 21 1 2 21 1 2 21 1 2 21 1 2 21 1 2 21 1 2 21 1 2 21 1 2 2w x1 1 2 21 1 2 21 1 2 21 1 2 2

R R Rx xR R R

j j j, , , kj j jj j j, , ,j j jkx xx xx xx xj j jj j j, , ,

             (9) 

 

Step 2: Making matrix of  decision makers- 

alternatives- criteria. 

  Identify the appropriate linguistic 

variables for evaluating the importance 

weight of criteria, and the rating of 

alternatives. 

K decision-makers use linguistic 

variables: very poor, poor, medium, good 

and very good (the corresponding fuzzy 

numbers of linguistic terms are shown in 

Table 2) to evaluate the rating of m 

candidates in n criteria. Triangular fuzzy 

numbers for the rating of alternative are 

shown in Figure 4. 

Table 2. Linguistic variables for the rating of 

alternative 

Symbol Linguistic 
terms 

Triangular fuzzy 
number 

very good ( , , )L M R 

good ( , , )L M R( ,L M R( ,( ,( ,( ,

medium ( , , )L M R

poor ( , , )L M R

  x  very poor ( , , )L M Rx x x x

 

 

 

 

 

Figure 4. Triangular fuzzy numbers for the 

rating of alternative 

Hence the  matrix of decision makers- 

alternatives- criteria and the fuzzy decision 

matrix can be written as Table 3. 

 
Step 3: combination of matrix of decision 
makers- criteria and decision makers- 
alternatives- criteria. 
 with the relation Eq.(10). 
 

 

1 1 1

1

(min ,..., , ... ,

max ,..., )

L L m m
ij ij kij ij k kij

R R

ij kij

Z y y w x w x

y y
        (10) 

 
ijZ : A Fuzzy Variable of the ith alternative 

according to jth criteria. 

Table 3. Matrix of decision makers- 

alternatives- criteria 

1C 2C nC

1D 1A
111 112 11n

2A
121 122 12n

mA
1 1m 1 2m 1mn

2D 1A
211 212 21n

2A
221 222 22n

mA
2 1m 2 2m 2mn

kD 1A
11k 12k 1k n

2A
21k 22k 2k n

mA
1km 2km kmn
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Table 4. Aggregated triangular fuzzy number 
decision matrix 

nC2C1C

n  2 1  

1nZ 

2nZ 

 

mnZ

 

 

 

12Z 

22Z 

 

2mZ

11Z 

21Z 

 

1mZ

1A 

2A 

 

mA

 
Step 4: Defuzzification 

Convert fuzzy number to non- fuzzy number 

(with using the relations Eq.(7 & 8)). The 

result of this step is given in Table 5. 

Step 5: Determine the best jf  , and the 

worst jf  values of all criterion functions, 

j=1, 2, . . ., n. If we assume the jth function  

Table 5. Non fuzzy number decision matrix 

nC  2C 1C 

n 
 

2 1 

1

2

n

n

mn

f

f

f

12

22

2m

f

f

f

11

21

1m

f

f

f

2

i

m

A

A

A

 

represents a benefit, then jf =maxi ijf   (or 

setting an aspired level) and jf = mini ijf  (or 

setting a tolerable level). Alternatively, if we 

assume the jth function represents a 

cost/risk, then jf =mini ijf  (or setting an 

aspired level) and jf = maxi ijf  (or setting a 

tolerable level).  

Step 6: Compute the values Si and Ri, i = 1, 
2, . . .,m, using the relations Eq.(4) & (5). 

Step 7: Compute the Qj values for 
i=1,2,…,m with the relation Eq.(6). 

Step 8: Rank the alternatives, sorting by the 

value of {Si, Ri, and Qi|i =1, 2, . . .,m}, in 

decreasing order.  

Step 9: Propose as a compromise the 

alternative (A(1)) which is ranked first by the 

measure min{Qi|i = 1, 2, . . .,m} if the 

following two conditions are satisfied 

(Huang et al., 2009). 

C1. Acceptable advantage: Q(A(2)) Q(A(1)) 

1/(m 1), where A(2) is the alternative with 

second position in the ranking list by Q; m is 

the number of alternatives. 

C2. Acceptable stability in decision 

making: Alternative A(1) must also be the 

bestranked by {Si or/and Ri|i = 1, 2, . . .,m}. 

If one of the conditions is not satisfied, 

then a set of compromise solutions is 

proposed, which consists of: 

Alternatives A(1) and A(2) if only 

condition C2 is not satisfied. 

Alternatives A(1),A(2), . . . , A(M) if 

condition C1 is not satisfied. A(M) is 

determined by the relation Q(A(M))  Q(A(1)) 

< 1/(m  1) for maximum M (the positions 

of these alternatives are close). 

5 CASE STUDY 

The purpose of this paper is to selection of 

the optimum underground mining method 

for Jajarm Bauxite Mine, using data obtained 

from the mine site.  

5.1 Selection of Criteria 

There are too many factors affecting mining 

method selection such as spatial 

characteristics of the deposit, geologic and 

hydrologic conditions, geotechnical 

properties, economic considerations, 

technological factors and environmental 

concerns. Main criteria and their sub-criteria 

are mentioned follows (Hartman and 

Mutmansky, 2002): 

(a) Spatial characteristics of the deposit 

such as general shape, plunge, dip, depth, 
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ore thickness existence of previous 

mining. 

(b) Geologic and hydrologic conditions such 

as mineralogy and petrography, chemical 

composition, deposit structure, uniformity 

of grade, alteration and weathered zones, 

and existence of strata gases. 

(c) Geotechnical properties such as elastic 

properties, plastic or viscoelastic 

behavior, state of stress, rock mass rating 

and other physical properties affecting 

competence. 

(d) Economic considerations such as 

reserves, production rate, mine life, 

productivity, comparative mining costs 

and comparative capital costs. 

(e)  Technological factors  such as recovery, 

dilution, flexibility of the method to 

changing conditions, selectivity of the 

method, concentration or dispersion of 

workings, ability to mechanize and 

automate and capital and labor intensities.  

(f) Environmental concerns such as ground 

control to maintain integrity of openings, 

subsidence or caving effects at the 

surface, atmospheric control, availability 

of suitable waste disposal areas, 

workforce and comparative safety 

conditions of the suitable mining methods. 

According to this criterion, 12 criteria 

having the most important are selected in 

Jajarm mine which are shown in Table 6. 

Table 6. Important creteria 

Symbol Criteria 
C1 Deposite thikness 
C2 Deposite dip 
C3 Deposite shape 
C4 RMR of hangingwall 
C5 RMR of ore 
C6 RMR of footwall 
C7 Depth 
C8 Recovery 

C9 Production 
C10 Ore grade 
C11 Ore uniformity 
C12 Dilution 

5.2 Candidate Mining Methods 

According to the mine and ore body 

conditions, five mining methods that are 

possible and appropriate to this mine, 

considered. These mining methods are given 

in Table 7. 

 

Table 7. Candidate mining methods 

Symbol Method 

SHS Shrinkage stoping  

CFS Cut & fill stoping  

SS Stull stoping 

SLS Sublevel stoping 

BM Bench mining 

5.3 Fuzzy VIKOR technique for selection 
of optimum underground mining method 

Step 1: Form a group of decision makers; 

determine the evaluation criteria and feasible 

alternatives. 

Step 2: Identify the appropriate linguistic 

variables for evaluating the importance 

weight of criteria, and the rating of 

alternatives. 

Step 3: Aggregated triangular fuzzy number 
decision matrix. (Table 8) 

 

Step 4: Defuzzification 

Convert fuzzy number to non-fuzzy number. 

(Table 9) 

Step 5: Determine the best jf   , and the 
worst jf   values of all criterion functions, j 
= 1, 2, . . ., n (Table 10). 
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Table 8.  Aggregated triangular fuzzy number decision matrix 

 
j SHS CFS SS SLS BM 

C1 (0.9,1,1) (0.1,0.44,1) (0.9,1,1) (0,0.44,1) (0.1,0.34,0.7) (0,0,0.1) 

C2 (0.5,0.75,1) (0.1,0.54,1) (0.3,0.66,1) (0,0.41,1) (0.1,0.54,1) (0.1,0.34,0.7) 

C3 (0.5,0.85,1) (0.3,0.5,0.7) (0.3,0.6,1) (0,0.41,1) (0,0.06,0.5) (0.1,0.4,0.7) 

C4 (0.1,0.52,0.9) (0.1,0.3,0.5) (0.1,0.38,0.9) (0.1,0.3,0.5) (0.1,0.34,0.7) (0.1,0.3,0.5) 

C5 (0,0.15,0.7) (0.1,0.3,0.5) (0,0.15,0.5) (0,0,0.1) (0.1,0.65,1) (0,0,0.1) 

C6 (0.9,1,1) (0,0.24,0.5) (0.1,0.52,0.9) (0,0.24,0.5) (0,0.3,0.7) (0.1,0.3,0.5) 

C7 (0.3,0.56,0.9) (0,0.25,0.7) (0.1,0.56,0.9) (0,0.15,0.5) (0.1,0.46,0.9) (0,0,0.1) 

C8 (0.3,0.64,0.0.9) (0.1,0.3,0.5) (0.5,0.91,1) (0,0,0.1) (0.1,0.3,0.5) (0,0,0.1) 

C9 (0.3,0.85,1) (0,0,0.1) (0.5,0.7,0.9) (0,0.21,0.5) (0.1,0.15,0.5) (0,0,0.1) 

C10 (0.3,0.66,1) (0.1,0.4,0.7) (0.5,0.7,0.9) (0,0.31,0.9) (0,0.35,0.9) (0.1,0.3,0.5) 

C11 (0.5,0.85,1) (0.1,0.3,0.5) (0.1,0.3,0.5) (0.1,0.3,0.5) (0.1,0.3,0.5) (0.1,0.21,0.5) 

C12 (0.1,0.44,1) (0.1,0.36,0.7) (0.5,0.7,0.9) (0,0.09,0.5) (0.1,0.3,0.5) (0,0,0.1) 

 

Table 9. Non fuzzy number decision matrix 

 
j SHS CFS SS SLS BM 

C1 0.975 0.495 0.975 0.47 0.37 0.025 

C2 0.75 0.545 0.655 0.455 0.545 0.37 

C3 0.8 0.5 0.625 0.455 0.155 0.4 

C4 0.51 0.3 0.44 0.3 0.37 0.3 

C5 0.25 0.3 0.2 0.025 0.6 0.025 

C6 0.975 0.245 0.6 0.245 0.325 0.3 

C7 0.58 0.3 0.53 0.2 0.48 0.025 

C8 0.62 0.3 0.83 0.025 0.3 0.025 

C9 0.75 0.025 0.525 0.23 0.1875 0.025 

C10 0.655 0.4 0.525 0.38 0.4 0.3 

C11 0.8 0.3 0.3 0.3 0.3 0.255 

C12 0.495 0.38 0.525 0.17 0.3 0.025 

 

Table 10. Determine the best jf  , and the worst jf  values of all criterion functions, j = 1, 2, . 
. ., n. 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

jf  0.975 0.655 0.625 0.44 0.6 0.6 0.53 0.83 0.525 0.525 0.3 0.525 

jf  0.025 0.37 0.155 0.3 0.025 0.245 0.025 0.025 0.025 0.3 0.255 0.025 

 

Step 6: Compute the values Si and Ri, i = 1, 
2, . . .,m (Table 11). 

Step 7: Compute the Qj values for 
i=1,2,…,m (Table 12) 

Step 8: Rank the alternatives, sorting by the 
value of {Si, Ri, and Qi|i =1, 2, . . .,m}, in 
decreasing order (Table 13). 

Table 11.  Index Si and Ri 

Table 12 .  Index Qi 

 SHS CFS SS SLS BM 

Si 4.5401 0.1739 5.284 4.0789 7.2717 

Ri 0.975 0.1739 0.975 0.8 0.975 

 SHS CFS SS SLS BM 

Qi 0.8076 0 0.858 0.6659 1 
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Table 13 . Rank the alternatives 

 1 2 3 4 5 

Si CFS SLS SHS SS BM 

Ri CFS SLS SHS SS BM 

Qi CFS SLS SHS SS BM 

Step 9: conditions 

 Since the Q(A(2))-Q(A(1))  

(0.6659-0  0.25,   

 Alternative A(1) also be the bestranked 

by {Si or/and Ri|i = 1, 2, . . .,m}. 

Hence alternative A(1) or cut and fill 
stoping method is optimum underground 
mining method for the mine under question. 

6 CONCLUSION 

There is no single appropriate mining 

method for a deposit. Usually, two or more 

feasible methods are possible and each 

method entails some inherent problems. 

Consequently, the optimal method is one 

that offers the least problems. Selection of an 

appropriate mining method is a complex task 

that requires consideration of many 

technical, economical, political, social, and 

historical factors. The appropriate mining 

method is that which is technically feasible 

for the ore geometry and ground conditions, 

while being a low-cost operation.  

In this paper using fuzzy VIKOR method, 

the degree of importance of the effective 

factors on the model was investigated. 

As a result, using this approach the cut 

and fill stoping method was selected as 

optimum underground mining method in 

Jajarm Bauxite Mine. 
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ABSTRACT Mine Facility Location Selection (MFLS) is one of the most commonly 
encountered problems in open pit mine planning and design in line with sustainable 
development. This is a critical decision which must be simultaneously considered a number 
of criteria such as economical parameters, environmental aspect, stability condition, 
technical factors, social-economic and facility characteristics to find the best location 
among feasible alternatives. Likewise, according to the sophisticated structure of the problem, 
imprecise data, lack of sufficient information, and inherent uncertainty, the usage of the fuzzy 
sets can be useful to solve this problem. The aim of this study is to propose a new hybrid 
Fuzzy Multi Attribute Decision Making (FMADM) model considering interaction between 
mine facility location selection effective criteria.  

In this paper Fuzzy Analytical Network Process (FANP) has been used to calculate the 
interaction between attributes and combination of Fuzzy Analytical Hierarchy Process 
(FAHP), FANP and entropy applied for obtaining the overall precise weight of attributes. 
Proposed model analysis showed that considering the interdependency of criteria changes the 
final weight of attributes. The proposed model has been applied for processing plant location 
selection of Sangan open pit mine of Iran. 
 
 
1 INTRODUCTION  

The purpose of mining is to meet the 
demands of metals and industrial minerals of 
human to develop infrastructure and improve 
the quality of life of the population. The 
extracted substances are in many cases the 
raw materials for the manufacture of many 
goods and materials (Kumral et al. 2008). 
The increasing demand and ascending price 
of minerals in many cases make it possible to 
process lower grade ores, which means more 
production of material and more 
environmental disturbance. Nowadays it is 
believed that the public expect the mining 
industry to care the environmental issues and 
try to eliminate the adverse environmental 
impacts or at least minimize the intensity as 
well as the extent of them. Sustainable 

development requirements finally lead to 
using improved and environmentally friendly 
technologies. Using sustainable development 
principles must be started at the beginning of 
the project by selecting suitable locations for 
mine facility installation. To put mining 
operation in line with sustainable 
development throughout its life and also after 
mine closure especial arrangements must be 
made (Naraei et al. 2011). 

Mine planning and design are very 
complex engineering subjects and require 
engineering knowledge and good 
understanding of many issues. One of the 
most important issues is decision making 
about MFLS. The goal of MFLS is to find 
the best location that should comply with 
sustainable development principles so as to 

The Impact of Interaction between Mine Facility Location 
Selection Criteria on Final Ranking of Site Alternatives 
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ensure sustainable development of mine and 
unify economic, social and the 
environmental efficiency. MFLS is a very 
important decision for mining companies 
because it is costly and difficult to reverse, 
and it entails a long term commitment so 
that, a poor choice of location might result in 
excessive transportation costs, adverse 
environmental impacts, or some similar 
conditions that would be detrimental to 
mining activities (Stevenson 1993).  

In the past, MFLS was a simple procedure 
on the basis of economic criteria and ease of 
operation. The process was to estimate the 
costs for each alternative, and the lowest cost 
alternative would ordinarily be the hands 
down winner (Caldewell et al. 1983, 
Robertson 1982 & Magda 1985), but effect of 
multiple criteria on MFLS makes it complex 
as the conventional procedures therein would 
result in incorrect results. Thus, the MFLS 
can be viewed as a multi attribute decision 
making (MADM) problem that helps 
decision makers select the most preferable 
decision and provide the basis of a decision 
support system. In MADM problem, a 
decision maker has to choose the best 
alternative that satisfies the evaluation criteria 
among a set of candidate solutions. In 
classical MADM methods ratings and the 
weights of the criteria are known precisely, 
whereas in the real world, in an imprecise 
and uncertain environment, it is an 
unrealistic assumption that the knowledge 
and representation of a decision maker or 
expert are so precise.  

The fuzzy set theory could resemble 
human reasoning in use of approximate 
information and uncertainty to generate 
decisions. It was specifically designed to 
mathematically represent uncertainty and 
vagueness and provide formalized tools for 
dealing with the imprecision intrinsic to 
many problems (Zadeh 1965).  

There is no well to 
consider the weight of MFLS criteria on final 
ranking of site alternatives, because not only 
various options should be considered as 
potential locations, but also there are a large 
number of effective which are in conflict 
with each other.  

The articles listed in Table 1 address some 
different type of facility location selection 
models in the context of MADM in the 
recent years and weighting methods 
containing their advantages and 
disadvantages. Based on Table 1, there are 
many shortcomings to these models that have 
been used for facility location selection, 
among them limitation in variety of attributes 
such as weakness in usage of linguistic and 
fuzzy attributes, ignoring the 
interdependency of attributes and ignoring 
entropy in decision matrix are the most 
important shortcomings that have been 
considered in this study. 

The main objective of this paper is to 
present a powerful fuzzy MADM tool for 
making an appropriate decision in complex 
problems featuring uncertainty and 
contradictory goals. To make this study more 
sensible and gain a more representative 
description of MADM process, we would 
apply a hybrid model of FAHP, FANP and 
entropy to weight MFLS criteria.  

FAHP is an application of the combination 
of Analytic Hierarch Process and fuzzy set 
that the linguistic scale of traditional AHP 
method could express the fuzzy uncertainty 
when a decision maker making a decision. 
Moreover, ANP would apply to calculate the 
interdependency between attributes. The 
proposed model is able to calculate and 
consider entropy in decision matrix. Finally, 
the processing plant location of Sangan open 
pit mine of Iran was selected using the 
TOPSIS method under a fuzzy environment 
due to its rational structure, simplicity, good 
computational efficiency and capability to 
determine the relative performance for each 
option in a simple mathematical form.  

2 BASIC OF FUZZY SET THEORY 

Uncertainty is a major part of decision 
making problems in real world that is 
resulted from two areas (Fouladgar et al. 
2011): (1) uncertainty in subjective 
judgments (2) uncertainty due to lack of data 
or incomplete information. The first is due to 
first is due to expert judgment. He/she may 
not be 100% sure when making subjective 
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Table 1. Facility location selection methods and weighting methods (advantages and disadvantages) 

 

judgments. The second one is caused by 
insufficient information of some attributes  

The fuzzy set theory, introduced by Zadeh 
(1965), deal with vague, imprecise and 
uncertain problems. A fuzzy set is a class of 
objects with continuum of grades of 
membership. Such a set is characterized by a 
membership function, which assigns to each 
object a grade of membership ranging 
between zero and one.  

2.1 Linguistic Variables 

A linguistic variable is a variable whose 
values are words or sentences in a natural or 
artificial language and provides a means of 
approximate characterization of phenomena 
which are too complex to be amenable to 
description in conventional quantitative 
terms. The main applications of the linguistic 
approach lie in the realm of humanistic 
systems (Zadeh 1975). 

2.2 Fuzzy Numbers 

A fuzzy number MM  is a convex normalized 
fuzzy set MM of the real line R such that: 

It exists such that one 0x R  with     

0 1
M

x0M
x0  ( 0x is called mean value of MM ). 

- 
M

x
M

x is piecewise continuous. 
In this paper, we use Triangular Fuzzy 

Numbers (TFNs) because of their 
computational simplicity and they are useful 
in promoting representation and information 
processing in a fuzzy environment. There are 

various operations on TFNs. Here, only 
important operations used in this study are 
illustrated. If we define, two positive TFNs 

1 1 1 1, ,M l m uM l m u1 1 1 11 1 1 11 1 1 11 1 1 11 1 1 1M lM l and 2 2 2 2, ,M l m u

, 
M l m u2 2 2 22 2 2 22 2 2 22 2 2 22 2 2 2M lM l  then: 

1- Inverse: 
 

1- 2- Addition: 
 

2- 3- Multiplication: 
 

3- 4- Division:  

The distance between two triangular fuzzy 
numbers can be calculated by vertex method 
as follow: 
 

(1) 

An important concept related to fuzzy 
numbers application is defuzzification. This 
study adopted the simple center of gravity 
method which converts a TFN into a crisp 
value as follows: 
 

(2) 

Where X MX M  is a crisp value. 

3 PROPOSED METHODOLOGY OF 
MFLS 

The general procedure for MFLS in this 
paper divided into the following steps: 

1- Determination of MFLS criteria and their 
interdependency 

2- Determination of criteria weight by 
hybrid model 
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Osanloo 2003 SAW  -- --   -- -- -- 

Akbari 2007 AHP  -- --   -- -- -- 

Hekmat 2007 FAHP  -- --    -- -- 

Shahriar 2007 Yager  -- --    -- -- 

Hekmat 2008 SAW, AHP ,TOPSIS  -- --   -- -- -- 

Yavuz 2008 Yager  -- --    -- -- 

Ataei 2008 ELECTRE  -- --   -- -- -- 

Golestanifar 2008 FTOPSIS, Fuzzy-WP  -- --    -- -- 

Athawale 2010 PROMETHEE II  -- --   -- -- -- 

Yazdani 2012 FVIKOR  -- --    -- -- 

Anand 2012 ANP   --   --  -- 
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3- Alternatives evaluation and ranking 
procedure by FTOPSIS (Fig. 1) 

Figure 1. Mine Facility Location Selection 
(MFLS) framework 

3.1 Determination of MFLS criteria and 
their interdependence 

There are many criteria that influence the 
MFLS process. In assessing a site as a 
possible location for mine facilities, many 
factors should be considered. These factors 
may be presented in many ways; however, 
the most useful way is the one that may be 
easily understood by the community 
(Tchobanoglous et al. 1993). The number 
and significance of these factors can be 
different for each mine in each country 
because the process of MFLS involves a 
number of stakeholders and sets of 
requirements such as legislation, restrictions, 
rules, local expertise and experience. In our 
study fifty four numbers of extracted leading 
evaluative attributes from comprehensive 
literature review, advices by experts and 
sustainable development framework 
introduced by Azapagic (2004) are grouped 
into six main categories, including (1) 

Economic parameters, (2) Stability 
conditions, (3) Social-economic factors, (4) 

Technical parameters, (5) Environmental 
concerns, and (6) Facility characteristic, then, 
each main category was protracted to subs 
criteria as shown in Figure 2. 

Based on the literature review in 
introduction, in existing methods, the 
influence of each criterion is verified 
separately and the interdependency between 

criteria is ignored. For example, the 
parameters “distance from pit” and 
“environmental impacts” are simultaneously 
effective on selecting site No. 1. As the 
distance from pit increases, the operational 
costs will also increase; thus, the probability 
of choosing site No. 1 decreases. On the 
other hand, increasing distance from pit can 
be compensated by eliminating the adverse 
environmental impacts or at least minimizing the 
intensity and the extent of them. In this 
condition site No. 1 may be preferred. This 
paper has discussed how to determine the 
interdependency between criteria in fuzzy 
environment. 

3.2 Determination Criteria Weight by 
Hybrid Model 

Since the criteria of evaluation have diverse 
significance and meanings, we cannot 
assume that each criterion has equal 
importance. Weighting methods try to define 
the importance of each criterion in decision 
making process. Changing the weight in 
decision making process has a great 
influence on ranking results.  

There are many methods that can be 
employed to determine the weights of 
criteria, such as the eigenvector, weighted 
least square method, entropy, AHP, ANP and 
linear programming techniques for 
multidimensional analysis of preference 
(LINMAP).  

Since in decision making problems, there 
are a direct access to the values of the 
decision matrix, the entropy and LINMAP 
methods can be commensurate. Entropy and 
LINMAP methods both work based on a 
decision matrix, whereas AHP, ANP, 
eigenvector method, and weighted least 
square method follow a set of judgment 
based pairwise comparison matrices. The 
selection of a method depends on the nature 
of the problem. These methods were neither 
enough nor complete, as it is not possible to 
design a methodology that will present a 
perfect weight for each criterion. In this 
study; a hybrid model based on entropy, 
FANP and FAHP methods used to obtain the 
overall fuzzy weight of each criterion. The 
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Figure 2. Structure of MFLS hierarchy 

overall fuzzy weight of each criterion *

jW *

jW j  

divides into the:  
1- Entropy weight ( jW jW j ) based on a 

decision matrix. 
2- FAHP weight with interdependency 

between criteria for fuzzy data ( jj ). 

The first step is to calculate the weights 
based on a decision matrix. The speed of the 
LINMAP method is, however, lower than the 
entropy method. Furthermore, using the 
entropy method, it is possible to combine the 
other weights (Samimi et al. 2012). In the 
second step FAHP and FANP was used to 
calculate the relative importance and 
interdependency between criteria given by 
experts in pairs. 

As for the experts’ opinions, this study 
adopted the Similarity Aggregation Method 
(SAM) proposed by Hsu and Chen (1996) to 
integrate experts’ weight values for various 
evaluation criteria. Moreover, ANP is used 
because there are nonlinear relationships 
among hierarchical levels which make some 
problems in implementation of AHP method. 
Eventually, a set of entropy weights ( jW ) that 
transform to nine level, fuzzy linguistic 
variables ( jW ) and AHP weights with 
interdependency between criteria ( ), can be 
used to determine the overall fuzzy weights   
( *

jW *

jW j ) by using: 

*

1

     1,2, , 
j j

j n

j jj

W
W j n

W

j jW j jj jj jj jj j
W j

j jj jj jj jj jj j* j jW j j
W jW j* j j

jW jW j
j jW j j

j j

W jW jW jW jW j        
W j jj jj jj jj jj j

W j , 2

j jj jj j

W j

j jj j

 (3) 

3.2.1 Entropy weighting 

Shannon and Weaver (1947) proposed the 
entropy concept for deciding the objective 
weights of attributes. Entropy weighting used 
to determine the importance weights of 
decision attributes by directly relating a 
criterion’s importance weighting relative to 
the information transmitted by that criterion. 
For example, in a given decision matrix with 
column vector xj = (x1j, x2j ,…, xmj) that 
shows the contrast of all alternatives with 
respect to jth attribute, an attribute has little 
significance when all alternatives have 
similar outcomes for that attribute. 
Mathematically this means that the projected 
outcomes of attribute j, Pij, are defined as: 
 

(4) 

The entropy jE of the set of projected 
outcomes of attribute j is: 
 (5) 

Where m is the number of alternatives and 
guarantees that Ej lies between zero and one. 

dj of the 
information provided by outcomes of 
attribute j as 1j jd E . 

Hence, the entropy weighting of an 
attribute is calculated as follows:  

 (6) 

In situations where a decision maker has 
an priori j  subjective weighting for 

1

n

j j jjW d d

1

m

ij ijij i
P xx

1
(1 ln ) ln   

m

j ij iji
E m P P
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attribute, a compromise weighting, *

j
W , that 

take into account both an expert’s opinion 
and the objective entropy weighting of the 
attribute is calculated as follows: 
 

(7) 

3.2.2 Weighting with FAHP 

This method has been developed by Saaty 
and Vargas (1994) that is a mathematical 
tool for solving the MADM problems. For a 
matrix of order n, ((n) × (n - 1)/2) 
comparisons are required. The fundamental 
scale used for this purpose is based on Saaty 
1-9 scale. AHP method is combined with 
fuzzy set to solve the problem of the 
conventional AHP in handling uncertainty. 
For achieving the aim, a scale of 1 91 91 91 9  can be 
defined for TFNs instead of traditional 
scale1–9, as presented in Table 2. 

Table 2. The definition of fuzzy number 

Intensity of 
importance 

Fuzzy 
number 

Linguistic 
 variable 

9  = (8,9,9) Perfect (P) 
8 

= (
(7,8,9) Absolute (A) 

7  = (6,7,8) Very Good (VG) 
6  = (5,6,7) Fairly Good (FG) 
5  = (4,5,6) Good (g) 
4  = (3,4,5) Preferable (PR) 
3  = (2,3,4) Not Bad (N) 
2  = (1,2,3) Weak advantage (W) 
1  = (1,1,1) Equal (E) 

This section calculated the weight value of 
criteria jw jw j  by “Column Vector Geometric 
Mean Method” proposed by Buckley, 
because the steps of this approach are 
relatively easier, less time taking and less 
computational expense than the other fuzzy 
AHP. 
 (8) 

 
(9) 

Where the column vector mean value of 
fuzzy number is iZiZ  and the weight of No. i 
criterion is jw jw j . 

3.2.3 Weighting with FANP 

The Analytical Network Process is one of the 
most comprehensive frameworks for the 
analysis of corporate decisions. It allows 
both interaction and feedback within clusters 

of elements (interdependency). ANP 
introduced by Saaty (1996), is a 
generalization of the AHP to generate 
priorities for decisions without making 
assumption about a unidirectional hierarchy 
relationship among decision levels. The 
major difference between AHP and ANP is 
that ANP is capable of handling 
interdependency between the decision levels 
and attributes. 

Because there is a high degree of 
interdependency between MFLS criteria, this 
study adopted the Fuzzy ANP (FANP) 
method to calculate the relative importance 
of the evaluation criteria. The weighting by 
FANP can be divided into three steps, which 
are described as follows: 

Step 1: Without assuming the 
interdependency between criteria, the expert 
is asked to weight all proposed criteria with 
FAHP method described earlier. The result 
of the SAM and FAHP methods on n criteria 
can be summarized in a weight vector ( jw jw j ) 
with the help of Equations 8-9.  

Step 2: The effects of the interdependency 
between the criteria are resolved. The expert 
will examine the impact of all criteria on 
each other by pairwise comparisons as in 
AHP method. A couple of questions such as: 
‘which criterion will influence criterion C2 
more; C3 or C5? And how much more?’ are 
answered. For achieving the aim, a scale of 
1 91 91 91 9  can be defined for TFNs (Tab. 2) and 0 
where C3 and C5 is independent of C2. 
Various pairwise comparison matrices are 
constructed for each criterion Ck as follow: 
 

(10) 

The local weight vectors for these 
matrices are calculated by using “Column 
Vector Geometric Mean Method” proposed 
by Buckley and shown as column 
components in fuzzy interdependency weight 
matrix ( 'w'w ). 

Step 3: Now we can obtain the 
interdependency priorities of the MFLS 
criteria by synthesizing the results from 
previous two steps as follow:  

 (11) 

*
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j j j j jj
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Finally, the overall fuzzy weights of 
evaluation criteria can be determined by 
Equation 3. 

4 ALTERNATIVES EVALUATION 
AND RANKING PROCEDURE 

The full ANP and AHP solution is only 
partially usable if the number of criteria and 
alternatives is low. In this paper, we use 
FTOPSIS and apply it to achieve the final 
ranking result to avoid a large number of 
pairwise comparisons and also four 
advantages addressed earlier. Also, the basic 
concept of this method is that the chosen 
alternative should have the shortest distance 
from the positive ideal solution and the 
farthest distance from negative ideal 
solution. Positive ideal solution is a solution 
that maximizes the benefit criteria and 
minimizes cost criteria, whereas the negative 
ideal solution maximizes the cost criteria and 
minimizes the benefit criteria. Therefore, this 
method is suitable for cautious (risk avoider) 
decision maker(s), because the decision 
maker(s) might like to have a decision which 
not only makes as much profit as possible, 
but also avoids as much risk as possible. So 
it is suitable for those situations in which the 
decision maker wants to have maximum 
profit and also the risk of the decisions is 
important for him/her (Aghajani et al. 2011). 

4.1 Fuzzy TOPSIS method 

The TOPSIS method is a technique to 
calculate the preferences by similarity to 
ideal solution and it was proposed by Hwang 
and Yoon (1981). In the classical TOPSIS 
method, the weights of the criteria and the 
ratings of alternatives are known precisely 
and crisp values are used in the evaluation 
process. However, under many conditions 
crisp data are inadequate to model real life 
decision problems. In such cases, the 
FTOPSIS method is proposed where the 
weights of criteria and ratings of alternatives 
are evaluated by linguistic variables 
represented by fuzzy numbers to deal with 
the deficiency of the traditional TOPSIS. In 
general, a MADM problem can be concisely 
expressed in matrix format as: 

 
 
 (12) 

Where possible alternatives 
are 1 2 , , , nA A A , 1 2, , , nC C C are criteria which 
measure the performance of alternatives and 

ijxijx is the rating of alternative iA  with respect 
to criterion jC which could be in three main 
types of information (linguistic terms, fuzzy 
numbers and deterministic data). The step of 
FTOPSIS method can be defined as follow 
(Chen, 2000): 

Step 1: Construct the normalized decision 
matrix RR  

The first step concerns the normalization 
of the judgment matrix ijD xD xD xD xD xD xD xD xD xD xijijD xD xD xD xD xD xijD x . Generally 
there are two kinds of attributes, the benefit 
type and the cost type. The higher the benefit 
type value is, the better it will be. While for 
the cost type, it is the opposite. This study 
adopts normalization methods for 
deterministic number, triangle fuzzy number 
and linguistic terms that introduced by 
Aghajani (2011): 

4.1.1 Deterministic numbers normalization 

Let ijr  be the normalized form of the 
number ijk , then for benefit index, we have: 
 

(13) 

And for cost index: 
 

(14) 

4.1.2 Triangular fuzzy number 
normalization 

Let  ,  , L M U

ij ij ijr r r be the normalized form of 

the triangle fuzzy number  ,  , L M U

ij ij ijk k k , then 

for benefit index, we have: 
 

(15) 

And for cost index: 

 
(16) 

maxij ij ij
j

r k k

minij ij ij
j

r k k

1 ,  ,    ,   1  , 
max max max

L M U

ij ij ij

U U U

ij ij ij
j j j

k k k
i m j I

k k k

2

min min min
 ,  ,  ,   1  , 

L L L

ij ij ij
j j j

U M L

ij ij ij
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i m j I

k k k
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   ,  1,2, ,i
i

i i

S
CC i m

S S

Where 1I  associated with the benefit 
criteria and 2I  associated with the cost 
criteria. With benefit and cost attributes, we 
discriminate between criteria that the 
decision maker desire to maximize or 
minimize, respectively. 

4.1.3 Linguistic terms normalization 

Linguistic terms can be transferred into 
TFNs, then use the Equations 15-16 to 
normalize them. Table 3 is applied to 
transform linguistic terms into TFNs.  

Table 3. Transformation linguistic terms to 
triangular fuzzy numbers 

The normalized decision matrix is as 
follows: 

   ,    1, 2, ,    , 1, 2, , ijR r i m j nR rR rR rR rR rR rR rR rR rR rR rR r    ,             ,       ,     ,    R rR rijR rR rR rR rijR rR rR rijR rR rR rR rR r  ,R rR rR rR rR rR rR rij  (17) 

Step 2: Constructing the weighted 
normalized decision matrix VV  

A set of weights *

jW *

jW j , where *

jW *

jW j  is the 
weight of the jth attribute, is incorporated to 
form the weighted normalized decision 
matrix VV  as follows: 
 

(18) 

Step 3: Define the Fuzzy Positive Ideal 
and the Fuzzy Negative Ideal Solutions 

Let us suppose that AA  identifies the fuzzy 
positive ideal solution (FPIS) and AA  the 
fuzzy negative ideal solution (FNIS). They 
are defined respectively as follows: 

1 2, , ,  ,

 Max  , 1,2, ,  , 1,2, ,

n

j ij
i

A v v v

v v i m j n

A vA vA vA vA v1 2, , ,  ,1 21 2 nv v,  ,  v vv v1 2, ,, ,1 21 2A v v v1 2, ,, ,1 21 21 2A v v vA vA vA vA vA v v vv vA v v v1 21 21 21 21 2

 M  1,2 Max  , 1,2, , Max  , 1j ij Max  , 1,2, ,ax  , 1 Max  , 1,2, ,
 (19) 

1 2, , ,  ,

 Min   1,2, ,  ,  1,2, ,  

n

j ij
i

A v v v

v v i m j n

A vA vA vA vA v1 2, , ,  ,1 21 2 nv v,  ,  1 2, ,, ,1 21 2A v v v1 2, ,, ,1 21 21 2A vA vA vA vA v v vA vA vA vA vA vA vA vA v v v1 21 21 21 21 2

 Min 1,2, Min   1,2, Min   j ij Min   1,2,in    Min   1,2,
 (20) 

Step 4: Measure the distance between 
alternatives and ideal solutions 

To calculate the distance of each 
alternative from AA  and AA  the following 
equations can be easily adopted: 

1

,   ,   1,2, ,
n

i ij j

j

S d v v i m ,   ij j,  ,  v v i m,   ,   ,   ,   ij j,  ,  ,  v vv v  (21) 

1

,   ,   1,2, ,
n

i ij j

j

S d v v i m ,   ij j,  ,  v v i m,   ,   ij j,   (22) 

,d is distance between two TFNs 
obtained from Equation (2). 

Step 5: Measure the relative closeness to 
ideal solution and final ranking 

The final ranking of alternatives is 
obtained by referring to the value of the 
relative closeness to the ideal solution, 
defined as follows: 

 
(23) 

According to the closeness coefficient, 
determine the ranking order of all 
alternatives. 

5 EVALUATING MODEL 
APPLICATION AND RESULTS 

In order to verify the proposed model, the 
selection of a processing plant location of 
Sangan open pit mine of Iran was evaluated. 
Sangan iron mine project is located 16 km 
north of Sangan and 300 km southeastern of 
Mashhad in Khorasan Razavi province in 
Iran. Three feasible alternatives were 
selected for the processing plant installation 
using Geographical Information System. The 
locations of alternatives are shown in Figure 
3 with letter ‘A’, ‘B’ and ‘C’. These 
locations are entered into the model as 
alternatives. For this case we screened proper 
criteria by opinions of decision group. 
Finally, 10 main criteria involved in this 
selection include belt conveyor length (C1), 
distance from railway (C2), distance from 
tailing dam (C3), preparation costs (C4), 
distance to main roads (C5), reclamation and 
closure costs (C6), stability condition (C7), 
social-economic factors (C8), water 
contamination (C9) and ecology disturbance 
C10). These parameters are entered as criteria 
to the model (Tab. 4). 

Ten main criteria are considered in this 
case so that four of which are crisp values 

Linguistic terms Triangle fuzzy numbers

The worst (TW) (0.0,0.1,0.2) 

Worse (W) (0.1,0.2,0.3) 

Very bad (VB) (0.2,0.3,0.4) 

Bad (B) (0.3,0.4,0.5) 

Normal (N) (0.4,0.5,0.6) 

Good (G) (0.5,0.6,0.7) 

Very good (VG) (0.6,0.7,0.8) 

Better (BE) (0.7,0.8,0.9) 

The best (TB) (0.8,0.9,1.0) 

.    ,  1, 2, ,    , 1, 2, , ij jV r w i m j nV rV rV r  1V r w i  ,  1  ,  1ij j.  .  .  V r   ,  1  ,  1  ,  1ij j.  .  .  V rV rV rV rV rV r .    ij j.  
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(C1, C2, C3 and C5), four of them are 
linguistic terms (C7, C8, C9 and C10) and 
others are fuzzy numbers (C6 and C4). In this 
process, stability condition and social 
economic factors are entered as benefit 
criteria (positive effect on decision making) 
and the other criteria are supposed as costs. 

Figure 3. Location of alternatives for the 
processing plant site (‘A’, ‘B’ and ‘C’) 

5.1 Calculate criteria weights by entropy 

Using Table 4 and Equations 13-16, 
normalized decision matrix calculated as 
Table 5.  

Due to complex calculations of entropy 
method for TFNs, traditional entropy method 
for deterministic number was applied in this 
step. Therefore, the simple center of gravity 
method applied, the results are shown in 
Figure 4. 

Figure 4. Ranking of main criteria by entropy 
method (  

5.2 Calculate criteria weights by FAHP 

An evaluation team of six members included 
two mine planning engineers, two academic 
professors and two environmental agencies 
was used. In this case, the relative 
importance of experts is equal. Note that, 
experts construct pairwise comparison matrix 
without assuming the interdependency 

between criteria. This section adopts SAM 
and FAHP to integrate experts’ opinions to 
obtain the relative importance of evaluation 
criteria given by experts’ in group decision 
(Fig. 5). 

Figure 5. Ranking of main criteria by SAM 
and FAHP 

5.3 Calculate interdependency between 
criteria by FANP 

In this section, the interdependency between 
the 10 main criteria is analyzed (Fig. 6). The 
experts will examine the impact of all criteria 
on each other by pairwise comparisons. 
Considering Figure 10, four pairwise 
comparison matrices for reclamation and 
closure costs, preparation costs, water 
contamination and ecology were developed. 
These criteria have dependency with other 
criteria. The local weight vectors for these 
matrices obtained by using column vector 
geometric mean method and shown as rows 
in matrix 'w'w (Tab. 6). 

Figure 6. Main criteria interdependency 
network 

5.4 Calculate FAHP weights with 
interdependency between criteria 

The relative importance of the criteria 
considering interdependence can now be 
obtained by multiplying the jw jw j  by the weight 
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Table 4. Evaluation value for processing plant location selection in hypothetical open pit mine  

Table 5. Normalized decision matrix 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

A 1.0 0.44 0.82 (0.87,0.93,1.0) 0.62 (0.83,0.90,1.0) (0.75,0.88,1.0) (0.67,0.83,1.0) (0.5,0.67,1.0) (0.5,0.6,0.75) 
B 0.56 1.0 0.78 (0.65,0.71,0.80) 0.84 (0.73,0.79,0.86) (0.5,0.63,0.75) (0.5,0.67,0.83) (0.4,0.5,0.67) (0.6,0.75,1.0) 
C 0.51 0.78 1.0 (0.71,0.78,0.87) 1.0 (0.76,0.83.0.90) (0.5,0.63,0.75) (0.5,0.67,0.83) (0.4,0.5,0.67) (0.6,0.75,1.0) 

 
Table 6. Interdependency between criteria 
(matrix '

jw '

jw j ) 

 
of matrix '  jw '

jw j based on Equation 11. The 
FAHP weights with interdependence 
between criteria are shown in Figure 7. 

Figure 7. FAHP weights with 
interdependency of criteria 

5.5 Calculate the overall weights of 
criteria  

The overall fuzzy weights ( *

jW *

jW j ) are obtained 
for each criterion by using Equation 3. The 
weight of each criterion includes entropy of 
decision matrix, weight of FAHP with 
considering interdependency between 
criteria by FANP. The final precise 
normalized weights of processing plant 
location selection criteria are illustrated in 
Figure 8. 
 

 
Based on Figure 8, belt conveyor length, 

preparation costs and distance from railway 
are the most important criteria in processing 
plant location selection in Sangan open pit 
mine, followed by distance from main 
roads, distance from tailing dam, stability 
condition and water contamination. The 
priority of other criteria is reclamation and 
closure costs, ecology and social economic 
factors. 

Figure 8. Overall precise weights of criteria 

In order to illustrate and analyze the 
effect of interdependency of criteria the 
proposed model was solved without 
considering interdependency between them. 
To achieve this aim we assume that 

j jwj jwj jj jj jj jj jj j (i.e. matrix '

jw '

jw j  do not formed), the 
results are shown in Figure 9. 

Figure 9. Criteria weights, (a) without 
considering interdependency of criteria                
(b) Considering interdependency of criteria 

 C1(km) C2(km) C3(km) C4(M$) C5(km) C6(M$) C7 C8 C9 C10 

A 3.6 3.2 7.4 (1.95, 2.1, 2.25) 2.6 (0.19, 0.21, 0.23) VG N VB N 
B 6.4 1.4 7.8 (2.44, 2.71, 3) 1.9 (0.22, 0.24, 0.26) N B B B 
C 7.0 1.8 6.1 (2.25, 2.5, 2.75) 1.6 (0.21, 0.23, 0.25) N B B B 
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5.6 Final ranking of alternatives by 
FTOPSIS 

In this section ranking process via 
FTOPSIS put forward. First, decision matrix 
(Tab. 4) normalized (Tab. 5) and then, the 
weighted normalized fuzzy decision matrix 
for the alternatives is calculated using 
Equation 18. After a weighted normalized 
fuzzy decision matrix is formed, fuzzy 
positive ideal solution (FPIS) and fuzzy 
negative ideal solution (FNIS) are 
determined using Equations 19-20. Then the 
distance of each alternative from FPIS and 
FNIS with respect to each criterion is 
calculated using vertex method (Eq. 1). 

iS , iS  and closeness coefficients of three 
alternatives are calculated by Equations     
21-23, results are shown in Table 7.  

Table 7: FTOPSIS analysis (considering 
interdependency of criteria) 

 A B C 

FPIS 2.16 2.32 2.36 

FNIS 2.03 1.80 1.78 

Closeness coefficient 0.485 0.437 0.430 

Ranking 1 2 3 

According to the closeness coefficient of 
three alternatives (Tab. 7), the ranking order 
of three alternatives is determined as            
A > B > C. The first alternative (A) is 
determined as the most appropriate facility 
location for the processing plant installation. 
In other words, the first alternative is closer 
to the FPIS and farther from the FNIS. 

Finally, in order to illustrate the effect of 
interdependency between criteria on final 
ranking, closeness coefficient of three 
alternatives calculated without considering 
the interdependency between criteria, the 
ranking order of three alternatives is 
determined as B > C > A (Tab. 8). 

Table 8. FTOPSIS analysis (without 
considering interdependency of criteria) 

 A B C 

FPIS 2.03 2.02 2.13 

FNIS 1.65 1.8 1.76 

Closeness coefficient 0.448 0.471 0.452 

Ranking 3 1 2 

6 CONCLUSION 

Mine facility location selection is a complex 
multi person, multi criteria decision problem 
while sustainable development challenges 
facing the minerals and metals industry need 
a comprehensive and interdisciplinary 
approach based upon reliable data and 
transparent methodical approaches. In 
assessing a site as a possible location for 
mine facilities, many factors should be 
considered. In this paper fifty four numbers 
of evaluative attributes are grouped into six 
main categories as shown in Figure 2. The 
main objective of this paper is to present a 
powerful fuzzy MADM tool for making an 
appropriate decision in MFLS problems 
featuring uncertainty and contradictory 
goals. In this approach, a hybrid model of 
FAHP, FANP and entropy was used to 
weight the criteria.  SAM and FAHP were 
used to integrate experts’ opinions to obtain 
the significance evaluation of evaluation 
criteria given by experts in group decision. 
Moreover, FANP has been used to calculate 
the interdependency between attributes. The 
proposed model is able to calculate entropy 
in decision matrix. Finally, the processing 
plant location of Sangan open pit mine of 
Iran was selected using the TOPSIS method 
under a fuzzy environment. Proposed model 
analysis showed that considering the 
interdependency of criteria change the final 
weights of attributes (Fig. 9). As a result 
ignoring the interdependency of criteria can 
cause error in final decision making.  
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1 INTRODUCTION 

Rock slope instabilities are a major hazard 
for human activities often causing economic 
losses, property damages and maintenance 
costs, as well as injuries or fatalities. 

Stability analyses are routinely performed 
in order to assess the safe and functional 
design of an excavated slope (e.g. open pit 
mining, road cuts, etc.), and/or the 
equilibrium conditions of a natural slope. 
The analysis technique chosen depends on 
both site conditions and the potential mode 
of failure, with careful consideration being 
given to the varying strengths, weaknesses 

and limitations inherent in each 
methodology. 

It is less than 25 years since most rock 
slope stability calculations were performed 
either graphically or using a hand-held 
calculator. The engineer today is presented 
with a vast range of methods for the stability 
analysis of rock and mixed rock-soil slopes; 
these range from simple infinite slope and 
planar failure limit equilibrium techniques to 
sophisticated coupled finite/distinct element 
codes.  

Geotechnical engineering is constantly 
evolving and its practitioners are always 
looking out for tools, which can improve 
design and help better handle the large 
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ABSTRACT Almost all collapses of rock slops especially in mines are related to 
discontinuities which include beddings, faults and major joints. Spatial distribution of 
collapses in open pit mines is related to distribution of discontinuities. Geostatistical 
assessments can be used for understanding the distribution of regionalized variables in any 
spatial study. In this paper, regionalized variable theory is used for analyzing and interpreting 
the spatial distribution of collapses taken place at Gole Gohar iron mine, which is located 
south west of Kerman city, Kerman province, and south west of Iran. In order to define 
regionalized variable distribution, at first step, variogram functions are determined for 
identifying the regional behavior. Furthermore, it is possible to estimate the tonnage of 
collapse for every local block on pit wall and prepare maps for the interpretation of behavior 
of the regionalized variable. Analysis of variograms showed that the tonnage of collapses 
have a spatial structure that make it possible to set up a geostatistical model to make a 
prediction of collapses for each block on the pit wall. 

Keywords: geostatistical assessment, regionalized variable, collapse, Gole Gohar open pit 
mine 



1794

M. Shademan, H. Hassani, P. Moarefvand. H. Madani, S. Karimi Nasab

 

uncertainties and variations inherent in soil 
and rock properties. In recent years, several 
authors have attempted to apply geostatistics 
to the problems of geotechnical engineering. 

Geostatistics, as a methodology for 
estimating recoverable reserves in mining 
deposits, was mathematically formalized by 
French professor Georges Matheron 1963, 
inspired by the pioneering work of South 
African mining engineer D.G. Krig in the 
1950's. Today it is extensively used in the 
mining and petroleum industries, and in 
recent years has been successfully integrated 
into remote sensing (Atkinson&Lewis, 2000, 
Qingmin Meng et al.,2009, Pardo-Iguzquiza 
et al., 2011) and Geographic Information 
Systems (GIS) (Choi&Park,2006), soil 
scientists (Choi&Park,2006, Emery, 2006, 
Tavares,  et  al., 2008), hydrologists 
(Hossain, et al., 2007, Chowdhury,2010) as 
well as statisticians, so there are successful 
applications to a variety of fields. 
Geostatistical assessments can be used for 
understanding the distribution of 
regionalized variables in any spatial study. In 
this paper, regionalized variable theory is 

used for analyzing and interpreting the 
spatial distribution of collapses taken place at 
Gole Gohar iron mine which make it 
possible to predict collapses for each block 
on the pit wall. 

2 GEOLOGICAL SETTING 

The Gole Gohar iron mine is located in the 
NW of Sanandaj-Sirjan adjacent to Zagros 
zone in Iran. The mining area is in 53 
kilometers of South West of the Sirjan in 
latitudes 55° 15  to 55° 24  and longitudes 
of 29° 3  to 29° 7 . Given the tectonic 
setting, the remote sensing survey of the area 
around the mine, the geological survey of the 
mine and the area around the Gole Gohar 
mine, following results about structural 
geology model of mine were obtained. 

In the study area variety of faults consist 
of reverse, strike slip, normal faults and 
tensile major joints with considerable 
aperture are visible. Figure 1 shows 
distribution of faults around the pit No.1 of 
Gole Gohar mine.

 

 

Figure 1. Distribution of faults around pit No.1 of Gole Gohar iron mine

What is causing the above faults is 
existence of a subsurface right lateral strike 
slip fault with NW-SE trend, which has to 
bend to the left. This situation has led a 
compressional lens shaped that its northeast 

and southwest boundary are thrust faults with 
dips towards the southwest and northeast, 
respectively. 

Structural geology section perpendicular 
to the strike of the zone is like a flower. 
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Flower structure as a certain structure of 
deformation strike slip areas can be seen in 
pit No.1 (Fig. 2). 

In bedrock including ore body, faults often 
has east-west trend with dip 45 to 80 degree 
toward the south. These faults almost are 

boundary between ore body and host rocks. 
Since these faults have small angle with the 
northern benches of mine and their slope is 
consistent with trenches slope, instability is 
inevitable(Hasanpoor,2010). 

 
 

 

Figure 2. Flower faults structure in southwest wall of the Gole Gohar mine (Hasanpoor,2010). 

 

3 DETERMINATION OF POTENTIAL 

FAILURE GEOMETRY 

To determine which failure modes are 
possible at a particular operation the geologic 
parameters in various sectors of the mine 
need to be quantified. Collecting information 
such as orientation, spacing, trace length, and 
shear strength with respect to major 
structures and other geologic features is an 
important key to determining failure 
potential. The basic failure modes which 
may occur are planar, wedge, circular and 
toppling failure (Osanloo, 2005, Girard, 
2001). 

The types of failures occurred in pit No.1 
of Gole Gohar mine which obtained in field 
survey is shown Figure 3. As shown in 
Figure 3, rock mass in Gole Gohar mine 
have potential of different kinds of failures. 

4 METHODOLOGY 

The basic geostatistical tool for 
characterizing spatial variability is the 
variogram . is defined as half the 
average quadratic difference for N pairs of 
measurements of the variable z separated by 
a distance h (Armstrong, 1998, 
Isaaks&Srivastava, 1989, Journel, 1989, 
Journel&Huijbregts, 1978): 

 (1) 

After calculation the experimental 
variogram, it is necessary to adjust the 
mathematical model to represent the variable 
as realistically as possible. It is important 
that the mathematical model represents the 
trend of the variogram with relation to 
distance h. Estimates obtained from kriging 
will then be more precise and reliable.
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Figure 3. Types of failures occurred on the pit wall of Gole Gohar iron mine. (a) wedge 
failure, (b) planar failure, (c) toppling failure and (d) circular failure(Hasanpoor,2010). 

 
Among the spatial interpolation 

(geostatistical estimation) techniques, a 
process called  kriging is the best linear 
unbiased estimator (BLUE) of unknown 
characteristics (Isaaks&Srivastava, 1989, 
Journel, 1989), which make it possible to 
understand the regional behavior of the 
natural phenomena for every point in the 
study area (Krige, 1962). 

 

If magnitudes of data are available at 
specific locations, it is possible to estimate 
the values of it at other locations through 
Kriging. The goal of Kriging is to predict the 
average value of  at specific point of 
study area. If  are 
known values of parameter, then the 
estimated value of parameter at point x0 is 
given by: 

 (2) 

Where  are weights applied to the 
respective values , such that: 

 (3) 

The weights wi are determined through 
kriging matrix (Isaaks&Srivastava, 1989, 
Subyani, 1997). 

 
5 GEOSTATISTICAL MODELING 
AND DISTRIBUTION OF TONNAGE 
OF COLLAPSE 

In this research the variable is the tonnage of 
collapses. Spatial distribution of collapses on 
the pit wall of Gole Gohar iron mine is 
shown in Figure 4.
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Figure 4. Spatial distribution of collapses on the pit wall of Gole Gohar iron mine. 

 
Here, the methodology is applied in order 

to represent the distribution of tonnage of 
collapse as regional variable. Investigation of 
the distribution of interest regionalized 
variable in the given pit wall is carried out by 
determining the variogram function. These 
functions are determined for identifying the 
regional behavior. 

Through experimental variograms 
calculated with all collapses data in several 
directions, the omnidirectional variogram 
which shows the best structure was chosen. 
The experimental variogram for collapse 
data was fitted using the spherical model 
which is presented in Figure 5. The optimum 
sill and range were chosen for variogram by 
cross validation method. The parameters of 
the variogram function are given in Table 1. 

After determining a theoretical variogram 
and running kriging technique using above 

mentioned methodology, it is possible to 
estimate the tonnage of possible collapses for 
every local block on pit wall and prepare 
maps for the interpretation of behavior of the 
regionalized variable. 

The kriging map of estimated blocks with 
the size of 25*25*10m in level 1594m is 
shown in Figure 6. 

 

Table 1. The parameters of the variogram 
function 

Variogram 
model 

Nugget 
(%2) 

Sill 
(%2) 

Range 
(m) 

Spherical 28.6 430 115 
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Figure 5. Spherical model fitted to experimental variogram calculated for tonnage of possible 
collapses occurred in Gole Gohar iron mine. 

 
 

 

Figure 6. Tonnage Kriging map of possible collapse in level 1594m 

 
Comparing figures 1 and 6 shows, there is 

a relation between tonnage of possible 
collapses and existence of discontinuities 
specially faults around the pit area. In an 
another word, distribution of possible 
collapses in pit No.1 of Gole Gohar iron 
mine is related to distribution of 
discontinuities so covariance between 
tonnage of possible collapses and 
discontinuities in area could be an approach 
to evaluate safety factor. As shown in Figure 
6, eastern and western walls are stable but 
there is possibility of collapse in northern 

and southern walls. Therefore, for 
development of exploitation in north and 
south walls of pit mine, some particular 
improvement methods such as unloading and 
maintenance system could be considered. 

6 CONCLUSION 

In this paper, geostatistical analysis 
provides a three dimensional visualization of 
spatial variability of tonnage of collapse in 
open pit Gole Gohar iron mine. The first step 
of the application is to determine variogram 
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functions for identifying the regional 
behavior, and the second step is to estimate 
the tonnage of collapse for every local block 
on pit wall and prepare maps for the 
interpretation of behavior of the regionalized 
variable. Results show that distribution of 
possible collapses in pit No.1 of Gole Gohar 
iron mine is related to distribution of 
discontinuities. Also there is possibility of 
collapse in northern and southern walls. 
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