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Stope Optimiser - A FORTRAN Program to Optimise Stope Boundaries 
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ABSTRACT: A computer program has been developed to implement a heuristic algorithm for optimisation of 
underground stope geometries. The Stope Limit Optimiser (SLO) software integrates FORTRAN 90 computer 
program with WINTERACTER user interface features to provide a Windows based interactive environment to 
define and modify the underground mine design parameters such as, block model parameters, stope geometry 
constraints and economic factors. The heuristic algorithm termed Maximum Value Neighbourhood (MVN) 
and its FORTRAN 90 implementation procedure are presented with examples. 

1 PROBLEM DEFINITION 2 STOPE GEOMETRY 

The problem of finding the best combination of 
desirable and non-desirable blocks that result in the 
maximisation of profit of a stope, may be expressed 
by Equation (1). 

Objective fonction: 

subject to: 

slope geometry constraints 

(1) 

where 
SEV: total stope economic value, 
BEVljk: the economic value of block B,}k, 
Ftjk'. an indicator function showing whether the 

block, B,jk, is mined or not and defined 
by Equation (2). 

ifBljL İs selectd, 

otherwise. 
(2) 

The geometry of the working spaces in underground 
mines is restricted in each orthogonal direction by 
both a minimum and a maximum size (length, width 
or height). Figure 1 depicts the minimum stope size 
constraints in ID, 2D and 3D directions. Physical 
parameters, such as the geo-mechanical properties of 
the ore-body and the surrounding rock, the dip, the 
depth and the thickness of the ore-body, affect the 
proposed underground mining methods, which, in 
turn, impose some practical restrictions on the 
extraction limit of the orelwdy. The block caving 
method imposes different constraints to the stope 
geometry from that imposed by a cut-and-fill 
method. A cut-and-fill stoping is flexible allowing 
the extraction of the high-grade ore whilst leaving 
the low-grade material İn the stope as fill. In 
practice, the minimum size of the stope must be 
designed so that sufficient space is provided for the 
activities of drilling, blasting and loading, as well as 
the traffic of personnel. The maximum limits of the 
stope dimensions are usually dictated by the geo-
technical factors. 
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Height constraint 

( a ) ID Constraint ( b ) 3D Constraint 

( c ) 3D Constraint 

Figure \ Stope Constraints ( a ) ID, ( b ) 2D and ( c ) 3D Problems 

3 THE NEIGHBOURHOOD CONCEPT 

The minimum stope size represents by the number 
of mmeable adjacent blocks of a fixed geological 
block model. This leads to the definition of the two 
terms the "neighbourhood" and the "order of 
neighbourhood". When considering a one-
dimensional stope constraint, a "neighbourhood" 
(NB) is the set of all the sequential blocks, including 
the block of interest in the specified direction, which 
may be mined to satisfy the minimum sfope size 
requirement. Figure 2 shows a row of seven blocks 
(Bj\ j = 1, 2 , .... 7}. If the mininram stope size is 
20 m and the block size of a fixed block model is 5 

m, then a possible neighbourhood for the block, 84, 
may consist of the set of four sequential blocks {Bi, 
B4, Bi, B6J. It is clear that the illustrated 
neighbourhood is not the only possible 
neighbourhood for the block, B4. One can easily 
assume that the set {B3, Bi, B4, B$) could be another 
possible neighbourhood for the same block, B4. 
Assummg that the stope geometry is restricted in 
length or height only, then the term "stope block 
fig/io" fSBR) may be expressed by Equation (3). 

(3) 

124 
Figure 2 Minimum Slope Size versus the Neighbourhood (NB) 



Figure 3. Possible Neighbourhoods of the Block, B4, for MJ Orders of 2,3 and 4. 

A stope block ratio of 3.8 suggests that the 
minimum stope length (height) must be 3.8 times the 
block size of the fixed block model. The stope block 
ratio is a continuous real function, which suggests an 
inclusion of partial blocks. Since the proposed MVN 
algorithm does not allow partial blocks, the value of 
SBR is rounded up. A positive integer value termed 
the "order of neighbourhood" (0„b) is used to 
represent the rounding up value of the stope block 
ratio. In other words, the order of neighbourhood 
represents the size of the neighbourhood set. That is, 
the total number of sequential blocks, including the 
block of interest, in a specified direction, which may 
be mined to satisfy the minimum stope size 
requirement. There are a number of combinations of 
blocks forming a neighbourhood for any given 
block. Figure 3 shows the possible neighbourhoods 
of the block, B4, for the neighbourhood orders of 2, 3 
and 4. For the NB order of 4, four neighbourhoods 
may be defined, so that each neighbourhood 
contains four members {Figure 3c). 

The set of neighbourhoods, NB„„ for any block, 
Bj, with any order of neighbourhood, "/ ", may be 
defined by the set of "/" sequential blocks İn 
ascending order, starting from the block, and 
ending with the block, where 1m /, as 

expressed by Equation (4): 

(4) 

where 
the column number,^, used for blocks in the 
m'* neighbourhood and 

BEV : the economic value of a typical block, 
located in the neighbourhood. 

The definition of any neighbourhood requires' 
(i) the location of the block, for which the 

neighbourhood is defined (the j address of 
the block in a ID constraint problem), 

(ii) the order of neighbourhood, "0„h"> and 
(iii) the neighbourhood number (that is, which 

neighbourhood is required). 
In general, each neighbourhood, NBmJ,i, is 

assigned a value, denoted by NBVmji which is 
defined by Equation (5) 

(5) 

For any block, Bj, with the neighbourhood order 
of "/", the maximum neighbourhood value 
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(MNBV), among all the elements of the set of 
neighbourhood values, is defined by: 

As a numerical example, consider the row of 
blocks shown in Figure 4. If the minimum slope 
length is ten meters and each block is three meters 
long, the stope block ratio is 3.3, which results in an 
order of neighbourhood of 4. All neighbourhood 
values for the block, B}, with the order of 4 are 
collected in the set NBVS}4. Then, the 4,h 

neighbourhood value (NBV) provides the maximum 
neighbourhood value, termed MNBV for this 
example. 

4 MAXIMUM VALUE NEIGHBOURHOOD 
ALGORITHM 

The neighbourhood concept locates the optimum 
neighbourhood for a block. This heuristic 
optimisation technique requires the following seven 
basic steps for each block within the economic 
model, with a value BEY: 

(İ) determine the neighbourhoods of the block, 
based on the order of neighbourhood, i.e. 
construct the set of possible neighbourhoods 
(NBS); 

{ii) evaluate the feasibility of each 
neighbourhood within the NBS set; 

(iü) calculate the economic value for each 
neighbourhood, i.e. neighbourhood value 
NBV, and determine the set of 
neighbourhood values (NBVS); 

(İv) locate the maximum neighbourhood value 
(MNBV) within the NBVS set; 

(v) determine the maximum value 
neighbourhood (MVN); 

(vi) flag the blocks of the MVN and 
(vii)update the stope economic value (SEV). 
The generalised flow-chart for the optimisation 

procedure in the MVN algorithm is illustrated in 
Figure 5 whereby blocks are taken into consideration 
one by one, in the order of rows {X direction), 
columns (Y direction) and finally sections (Z 
direction). FORTRAN 90 implementation of MVN 
algorithm has been provided by Ataee-pour (2000). 
If a block has a non-negative value and is not 
already flagged, the procedure will continue to 
construct its set of neighbourhoods, (NBS), based on 
the order of neighbourhood "1 "; calculate the values 
of neighbourhoods and finally locate the maximum 
neighbourhood value (MNBV) as well as the 
maximum value neighbourhood (MVN) of the block. 
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The algorithm then determines whether or not the 
maximum neighbourhood value is non-negative, i.e. 
it contributes to the stope value. Ignoring the blocks 
with a negative MNBV, the procedure continues for 
the non-negative ones. The MVN of each block 
represents its marginal contribution to the stope 
value. This marginal value may be negative, zero or 
positive. Negative marginal values are ignored and 
the algorithm selects only a block with an MVN that 
provides a non-negative marginal value. The 
elements of that MVN are then flagged and included 
in the stope. The above process is repeated for all 

blocks withm the block economic model. After all 
the blocks are exammed, the final optimum stope 
boundaries are displayed. Four checks are used in 
this algorithm to exclude unnecessary blocks. A 
block is ignored: 

(1) if the block is flagged already; 
(2) if the block has a negative dollar value; 
(3) if the maximum neighbourhood value 

(MNBV) of the block is negative; and 
(4) if the marginal value provided by the MVN is 

negative 

Figure 5. Generalised Flow-Chart for the Optimisation Procédure 
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5 NUMERICAL EXAMPLE 

Consider a row often 10 m blocks, {B, \j = 1,2, ..., 
10}, shown in Figure 6. The number inside each cell 
represents the economic value, BEV„ of the 

respective block. A 25 m minimum stope length 
gives a stope block ratio is then 2.5, which results İn 
the order of neighbourhood of 3. The pseudocode of 
the MVN algorithm with this example is provided 
below: 

Figure 6 A Row of Blocks with 10 Columns taken from an Economic Block Model 

Step 1 : Initialise variables. 
Block length = 10 m; Minimum stope length = 25 
SBR=2.5; On[> = 3 
SEV = 0; F = 0; FF = 0 

Step 2: Examine the first block. 
Bi: BEV|=-3; Fj = 0 

Step 3: Check the negativity and the flag of the block. 
BEV[ < 0 B!oçk.B] is exempted from furÖıer process. 

Go to Step 9. 
Step 9: Check the end of the model. 

Bj is not the last block. Continue. 
Step 10: Examine the next block. 

B2: BEV 2 =1; F2 = 0 
Go to Step 3 

Step 3: Check the negativity and the flag of the block. 
BEV2 > 0 and F2 * 1 Continue. 

Step 4: Locate die maximum neighbourhood value (MNBV) 
NB, = { 1 , 0 , - 4 } N B V , = 1 + 0 - 4 =*-3 
NB2={-3, 1 , 0 } N B V 2 = - 3 + l + 0 =-2 
NB3 = Not feasible 

MNBV =-2; MVN = NB2 

Step 5: Check the negativity of the MNBV. 
MNBV < 0 Block B2 Is exemptedfrom further process. 

Go to Step 9. 
Step 9: Check the end of the model. 

B2 is not the last block. Continue. 
Step 10: Examine the next block. 

B3: BEV3 = 0; F3 0 
Go to Step 3 

Step 3 : Check the negativity and the flag of die block. 
BEV3 £ 0 and F3 Continue. 

Step 4: Locate the maximum neighbourhood value (MNBV). 

Step 5: Check the negativity of die MNBV. 
MNBV < 0 Block B3 is exempted from further process. 

Go to Step 9. 
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Step 9: Check the end of the model. 
B3 is not the last block Continue 

Step 10: Examine the next block 
B4. BEV4 = -4; F4 = 0 
Go to Step 3 

Step 3: Check the negativity and the flag of the block. 
BEV4 < 0 Bl«^ % Ä^einplei feıâ farther process. 

Go to Step 9 
Step 9: Check the end of the model. 

B4 is not the last block. T> Continue. 
Step 10: Examine the next block. 

B s: BEVs = 3; Fs = 0 
Go to Step 3 

Step 3: Check the negativity and the flag of the block 
BEVs £ 0 and F5 # 1 •* Continue. 

Step 4: Locate the maximum neighbourhood value (MNBV). 
NB, = (3, -2,4} •• NBVi = 3 - 2 + 4 =5 
NB2 = H, 3, -2} -» NBV2 = - 4 + 3 - 2 = -3 
NB3 = {0, -4,3} •* NBV3 = 0 - 4 + 3 = -1 

* MNBV = 5; MVN = NB, 
Step 5: Check the negativity of the MNBV. 

MNBV > 0 * Continue. 
Step 6: Calculate the marginal value. 

MVN = NB, = {BEVj, BEV6, BEV7} 
F s = 0 •» FF5 = 1; F6 = 0 •» FF6 = 1; F7 = 0 •* FF7 = 1 
Marginal Value - BEVS. FFS + BEV6. FF6 + BEV7. FF7 

= ( 3 x l ) + ( - 2 x l ) + ( 4 x l ) = 5 
Step 7: Check the negativity of the marginal value. 

Marginal Value > 0 * Continue. 
Step 8: Update the stope. 

SEV = SEV + Margin Value = 0 + 5 = 5 SEV - 5 
F 3 - l ; F 6 = l ; F 7 = l 

Step 9: Check the end of the model. 
Bs is not the last block. Continue. 

Step 10: Examine the next block. 
B6: BEV6 = -2; F 6 = l 
Go to Step 3 

Step 3: Check the negativity and the flag of the block. 
BEV6 < 0 Slock Bg is exempted from feather proeess. 

Go to Step 9. 
Step 9: Check the end of the model. 

Be is not the last block. Continue 
Step 10: Examine the next block. 

B7: BEV7 = 4; F7 = 1 
Go to Step 3 

Step 3 : Check the negativity and the flag of the block. 
F 7 = 1 Block B? is exempted from fî&ïhesr process* 

Go to Step 9. 
Step 9: Check the end of the model. 

B7 İs not the last block. Continue. 
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Step 10: Examine the next block. 
B„: BEVg = 0, Fg = 0 
Go to Step 3 

Step 3: Check the negativity and the flag of the block. 
BEVg > 0 and F8 Continue. 

Step 4: Locate the maximum neighbourhood value (MNBV). 
NBV, = 0 - 1 + 2 
NBV2 = 4 + 0-l 
NBV3 = -2 + 4 + 0 
MNBV = 3; 

= 1 
= 3 
= 2 
MVN = = NB2 

Step 5: Check the negativity of the MNBV. 
MNBV > 0 Continue. 

Step 6: Calculate the marginal value. 
MVN = NB2 = {BEV7, BEVg, BEV9} 
F 7 = l F F 7 = 0 ; F„ = 0 FFB = 1; F9 = 0 FF9 = 1 
Marginal Value = BEV7. FF7 + BEVg. FFg + BEV9. FF9 

= <4x0) + ( 0 x l ) + <-lxl) = -l 
Step 7: Check the negativity of the marginal value. 

Marginal Value < 0 Block B« İs exempted from further process. 
Go to Step 9. 

Step 9: Check the end of the model. 
Bg is not the last block. Continue. 

Step 10: Examine the next block. 
B9: BEV9 = -1; F9 = 0 
Go to Step 3 

Step 3: Check the negativity and the flag of the block. 
BEV9 < 0 Block B ï̂s exempted Ètm färtfeerpöeess. 

Go to Step 9. 
Step 9: Check the end of the model 

Bt> is not die last block. Continue. 
Step 10: Examine the next block. 

Bi0: BEV10 = 2; Fi O =0 
Go to Step 3. 

Step 3: Check the negativity and die flag of die block. 
BEVio > 0 and F 1 0 Continue. 

Step 4: Locate tile maximum neighbourhood value (MNBV). 
NB, = Not feasible 
NB2 = Not feasible 
NB 3 = { 0 , - 1 , 2 } N B V 3 = 0 - l + 2 = 1 

MNBV=1; MVN = NB3 

Step 5: Check the negativity of the MNBV. 
MNBV > 0 Continue. 

Step 6: Calculate the marginal value. 
MVN - NB3 = {BEVg, BEV9, BEV10} 
F 8 = 0 FF8 = 1; F9 = 0 FF9 = 1; F,0 = 0 FF 1 0 = 1 
Marginal Value = BEVB. FFS + BEV9. FF9 + BEVio. FF 1 0 

= ( 0 x l ) + (- lx l ) + ( 2 x l ) = l 
Step 7: Check the negativity of tfıe margmal value. 

Marginal Value 0 Continue. 
Step 8: Update the stope. 
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NBi = {0,-l,2} 
NB2={4,0,-1} 
NB3 = {-2,4,0} 



SEV = SEV + Marginal Value = 5 + 1 = 6 
F a = l ; F ç = I ; F, 0= 1 

Step 9: Check the end of the model. 
Bio is the last block. Go to Step 11. 

Step 11 : Output the results. 
Stop»» (B* Bs, Bfc Bs, Bs*»8ış)î Stope Value-6 
STOP 

END 

SEV = 6 

Figure 7 shows the optimised row of blocks, in 
which the flagged blocks are shaded. The first four 
blocks, including one positive and one zero value 
block, are excluded from the final stope as they do 
not improve the stope economic value. In addition, 
two negative blocks have been included in the 
optimum stope to insure that the minimum stope size 
constraints are met. 

The following example (Figure 8a) shows a 
section of six rows with six columns of blocks, that 
has been optimised using the algorithm. In this 
example, the order of neighbourhood equals 3 in the 
vertical direction, that is, the stope has a minimum 
height restriction of three blocks. The optimised 
section has been shown in Figure 8b, where the 
flagged blocks have been shaded. Table 1 
summarises the step-by-step application of the MVN 
algorithm to the blocks in the third column of Figure 
8a. 

6 CONCLUDING REMARK 

The "maximum value neighbourhood" concept uses 
a fixed economic block model to outline the 
optimum geometry of a stope. After expressing the 
optimisation objective function as maximization of 
net stope economic value, the imposed stope 
geometry constraints were formulated İn terms of 
"neighbourhood" and "order of neighbourhood". For 
an individual block, the MVN approach outlmes a 
small island of mineable blocks within the whole 
ore-body. 
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( b ) Optimum Stope Section 

Figure 8. Optimising a Stope Section using the MVN Algorithm with a 1D (height) Constraint. 
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Table 1 Summary of the Algorithm Applied for Column 3 of Figure 8 
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