Endüstriyel Hammaddeler Sempozyumu. Köse ve Kail (eds) © *İzmir / Türkiye > 21-22 Nisan 1995* Bigadiç Zeolitlerinde X - Işını Mikroprob Cihazı ile Belirlenen Kanserojen Lifsi **Yapılaşmalar**

U. Köktüric, H. Yılmaz ve A. Baykal Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Bornova, izmir

ÖZET: Zeolit grubu mineralleri 23 değişik yapı ortaya koyarlar. Bunların bir kısmı da mordenit ve erionit gibi lifsi yapılı zeolitlerdır ki bunların akciğer zarında kanser yapıcı mezotelyome hastalığına neden olduğunun ortaya konması ile Amerika'da Arizona ve Oregon'daki lifsi zeolit madenleri kapatılmıştır. Değişik teknolojik özelliklere sahip zeolit minerallerinin ülkemiz endüstrisinin farklı kesimlerinde kullanım olanaktan henüz yaratılamamıştır. Ancak küçümsenmeyecek oranda Bigadiç yöresi zeolitleri her yıl üretilip yurtdışında satılmaktadır. Bigadiç yöresindeki zeolit oluşumlarından alman örnekler üzerinde daha önce yapılan çalışmalarda erionit ve mordenit liflerinin varlığı ortaya konmuştur (Köktürk ve Gümüş, 1995). Bu çalışmada Bigadiç zeolit oluşumlarından alman örneklerde X-ışını mikroprob cihazı ile belirlenen farklı lifsi yapılaşmalar ve özellikleri ortaya konmaktadır.

ABSTRACT: Zeolite group minerals show 23 different form. Some of those which cause canceric mesothelioma disease in lung, are fibrous zeolites such as mordenite and erionite which have been abolised fibrous zeolite miners in Arizona and Oregon, U.S. In different industrial areas of our country, use of zeolite minerals which have different technological properties have not been established yet. On the contrary, Bigadiç region zeolites have produced at a good level and exported every year. In investigation which carried out samples taken Bigadiç region zeolite formation, presence of erionite and mordenite fibrous have been found (Köktürk and Gümüş, 1995). In this research, different fibrous formation and their properties determined by X-ray microprobe instrument have been demonstrated on this samples taken from Bigadiç zeolite formation.

1. GİRİŞ

Balıkesir iline bağlı Bigadiç İlçesi kuzeyi, Mesozoik yaşlı ofiyolitik karmaşığına ait kayaçlar ile Neojen yaşlı volkanik ve volkanosedimenter kayaçlardan oluşmaktadır (Baysal ve diğ. 1985). Bunlardan ofiyolitik karmaşığına ait kayaçlarla Alt Miyosen yaşlı volkanikler, Orta Miyosen-Alt Pliyosen yaşlı sedimenter istifin tabanını oluşturur. En üstte ise Kuvaterner yaşlı bazalt ve alüvyonlar yer alır. Genel hatları ile tanımlanan bu istif, (Baysal ve diğ., 1985), tarafından 10 litostratigrafik birime bölünmüştür. Temel kayaçlar taban volkaniti, taban volkanoklastiti, taban kireçtaşı, alt tüf, alt boratlı birim, üst tüf, üst boratlı birim, pliyokuvartemer, çökel, kuvaterner bazalt (Şekil 1).

Neojen yaşlı alt boratlıbirim ile üst boratlı birim arasında yer alan yaklaşık 250 m kalınlıktaki üst tüf biriminden Çamköy kuzeydoğusu, Kireçlik Tepe güneyinden inct ve taba taneli tüf örnekleri sistematik olarak alınmıştır (Şekil 2), (Baysal ve dig., 1986). Bigadiç zeolit oluşumlarını ekonomik açıdan incelemişler ve zéolit minerali olarak % 75'in üzerinde klinoptilolit-höylandit'in varlığımı ortaya koymuşlardır. " Analsim, opal-CT, smektit, kuvars, feldspat bileşimi oluşturan diğer minerallerdir.

Kumbasar ve diğ. (1993), ince ve kaba taneli üst tüften alınan örneklerde yaptıkları XRD, XRF ve NMR analizleri sonucunda ince taneli tüfte % 84, kaba taneli tüfte % 98 klinoptılolit'in yanında cam, çok az kuvars, feldspat ve opal-CTnin bulunduğunu ortaya koymuşlardır.

2. MİKROPROB ÇALIŞMALARI

Alınan örnekler D.E.Ü. Maden Mühendisliği Bölümünde bulunan XRD ve Jeol SUPER-PROB 733 cihazında incelenmiştir.

Bu araştırmada üst tüf biriminden alınan on adet ömek incelenmiş, yaklaşık 100 değişik fotoğraf çekilmiş olup, bunlardan ancak birkaç tanesi burada kullanılmıştır

Numuneler serbest yüzey oluşturmak amacıyla kırılıp **5-20** mm boyutunda parçacıklar haline getirilip, elektrik iletkenliğini sağlamak ve spektral analız yapabilmek için önce karbon

filmi ile (yaklaşık 100 A°) daha sonra kaliteli görüntü elde edebilmek amacı ile Au ile (yaklaşık 200 A°) kaplanmışlardır.

İkincil elektron ışığı ile elde edilen görüntüler, cihazın monitör ekranında incelenmiş ve fotoğraftan bir kamera yardımıyla çekilmiştir. İncelemeler sırasında istenilen bölgeler, cihada bulunan X-Ismi speLrometre ile analiz edilmiştir.

Bilindiği gibi doğada 40 tür zeolit minerali büyük miktarlarda ve oldukça saf rezervler halinde bulunmaktadır. Bunlardan endüstriyel önemi olanlann sayısı çok azdır. Çizelge l'de zeolit türlerinin bazı yapısal ve kimyasal özellikleri verilmiştir. Çizelge l'de görüldüğü gibi, zeolit minerallerinin pek çoğu iğnemsi, ışınsal ve lifsi yapı özelliğine sahiptirler. Bigadiç yöresi üst tüf birimi örnekleri içinde özellikle bu tip yapılara sahip mineraller araştırılmıştır. Yapılan incelemelerde eriyonit ve mordenit minerallerinin varlığı, örneklerin ikinci) elektron görüntülerinin Mumpton ve diğ., 1978, ve Tsitsishvili ve diğ. 1992, deki görüntülerle karşılaştınlmasıyla ve yapılan mikroprob spektral analizleriyle kanıtlanmıştır.

Kristal yapılan tek yönde gelişmiş olan eriyonit ve mordenit mineralleri üst tüf birimi içinde farklı yapı şekilleri ortaya koymuşlardır. Bu farklı yapı şekillerini aşağıdaki şekilde gruplandırmak mümkündür.

- ü Çızgısel (jorunumdekı Mineraller:
- Bir mineralin içinde, o minerale ait du: hatlar oluşturan lıfı yapılaşmalar

Bu hatlar bazen mineral sınırlarına paralel hatlar halinde, bazende mineral sınırı ile uyumu olmayan hatlar halinde oluşmuşlardır.

304

SiSTEM	SISTEN		SER	Li tostra Tigrafi Birimi	KALINLIK (m.)	LİTOLOJİ AÇIKLAMALAR
	LOVATERNER			. K.	2	Qal : Alüvyon
				K. Bazalt	£30	$\begin{pmatrix} A_A & A_A & A_A \\ A_A & A_A & A_A \end{pmatrix}$ C 3 : Bazalt
SENOZOYİK				urterner L	rterner 20	FQc: Mikal: Silt,Konglomera, Silt, Kil ve Tüf Ardalanması
		PLİYOSEI		Pliyokuva Cöke	i.	
	NEOJEN		Üst Miyesen	hat tti Br	100	Lb : Kiltaşı - Marn - Dolomit - Kireçtaşı Tuf Ardalanmaşı
		MİYOSEN			н 	(mit seviyelerde Borat Katmanir)
				Üst Tür	± 250	Ut : Gölset Tüf
				Alt BeratlıBirim	11 10 10	Ao: Alt seviyeleri Borat Katmanlı TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
				ALT TUP	071 ==	At : Yanal geçişli karasal ve gölsel kristal tüfler
			Orta Miyesen	Taban Kirectası	# 100	Tk : Altta dolomitce zengin karbonatlı orta kesimde karbonatlı tüfit ardalanmalı üstte karbonat
			Alt Miyesen	Taban Volkanjiti	± 150	v v v v v v v v v v v v v v v v v v v v
	MİYOSEN ÖNCESİ				*	SSSS Tims:Ternel Serpantiniti (Serpantinles- memis ofiyolit kayaçlar) Timk:Ternel Rekristalize Kireçtaşı Timm:Ternel Metamorfiti (Barası an Diteriori Meta

Endüstriyel Hammaddeler Sempozyumu 1995. İzmir Türkiye

Şekil 1. Bölgenin Genelleştirilmiş Litostratigrafik İstifi

Şekil 2. örneklerin Alındığı Bölge

306

Grup	Mineral	Yapı	Formulu	En Yaygın Katyon
S4R	Philipsite	Prizmank pseudo ortorombik	(Cao 5 Na K)6/Al68(10022) 12H20	Ca veva Na veva K
	Harmotome	lşınsal	Bag[At4S1[2032] 12 H20	Ba
	Gismondine	Pseudo oktahedral	Ca4[Al8Si8032] 16H20	Ca
	Garronite	İşinsal	NaCa2 4 (Al6S110032) 14H20	Ca
	Analcime	Trapezohedral	Nato[A1toS1320961.toH20	Na
	Wairakite	Trapezohedral	Ca8[A116St32096] 16H20	Ca
	Paulingite	Rombik dodekahedral	(K2 Na2 Ca Ba)76	ĸ
			1A1[52S15230]334] 700H20	
	Laumontite	Prizmauk	C 14[AI8S(10 ⁰ 49] 10H20	Ca
	Yugawaralite	Tabular	Ca2[Al4Si12032] 8H20	Ca
S6R ve	Chabazite	Pseudo kubik tabular	Ca2(Al4Si8024) 13H20	Ca veva Na
DoR	Gmelinite	Tabular bipiramidal	Na8[A18S116048] 24H20	Na veva Ca
	Faujasite	Oktahedral	Na12C1[2Mg11]Also51[330384] 235H20	Na
	Enonite	Prizmatik, lifsi, çubuksu	(K2 Ca M2 Na2)4 8 AloS1270721 27H20	Ca veva Na veva K
	Offrente	Prizmatik	(K2 Mg Ca Na2)2 5] AlsSi13036] 15H20	Cạ veva Mg
	Levyne	Tabular	CastAleS(12036) 18H20	Ca
	Mazzne	lgnemst	K2Mg2Ca1.stAloS127072} 28H20	Mg
4-1	Natrolue	Prızmatik, ışınsal	Na16[A116S124080] 16H20	Na
	Tetr Natrolite	Prizmatik radval		Na
	Mesolite	İşınsai	Na16Ca16[A148St720240] 64H20	Na veva Ca
	Scolecue	Prizmatik Işinsal	Ca8[A116S(24060] 24H20	Ca
	Thomsonite	Prizmatik	Na4Ca8[Al20Si20080] 24H20	Ca
	Gonnardite k	Prizmatik, lifsi	Na4Ca2[Al8St12040] 14H20	Na
	Edingtonite	Prizmatik	Ba2[AI4S16020] 8H20	Ba
۱ -۱	Mordenite	İşınsal, lıfsi	Na8 A18S140096 24H20	Ca veva Na
	Dachiardite	Lifsi	NasjAls5119048112H20	Calveya Na
	Fermerne	lşınsal	Naj 5Mg2[Als 5\$13)) 5072] 18H20	Mg
	Epistilbite	Prizmauk	Ca3[Al ₀ Si]8048[16H20	Ca
4-4-1	Stellerite	Tabular	Ca4[AlgS12g072] 28H20	- <u> </u>
	Sulbue	Tabular	Na2C34[Al108126072] 34H20	Ca veva Na
	Barrence	Tabular	Na8[A18S128072] 26H20	Na
	Brew sterite	Prizmatik tabular	Sr2[AL4Si12032] 10H20	Sr
	Heulandite	Tabular	Ca4[AlgS128072] 24H20	Ca
	Cimopulohte	Tabular, ışınsal	Na6[Al6Si30[172] 24H20	Na

Çizelge 1. Zeolitlerin Yapısal ve Kunyasal Özellikleri

Kaynaklar I Mump t on F A. Sand L B . 1978 Natural Zeolites. Pergamon.

2 Tsitsishvill G V ve dig. 1992. Natural Zeolites. Ellis Honvood

I nılıı\iu\el HamımuMılıı Sempozutmu I W? İzmit Inikm

I otoğraf l'de ust tuf birimi içinde ince taneli >apı>a sahip örneklerden birinde mineral sınırına paralel gelişmiş bir lif oluşumu noulmektedır

I otoğiaf 1 Lıfsı Yapılı Enyonit Minei alının İkincil I lektion Görüntüsü (4000 X)

İki minerali hırhırıne bağlayan lif
i li u sum lan

Bu tuı oluşumlarda lifler bazen aynı cins mıncıallcı bazende farklı cins mineraller alasında gelişmişlerdir Fotoğraf 2de ust tuf bınını içindeki kaba taneli yapıya sahip örneklerden birinde, mordenit mineralleri dtdsında ve mordenit klinoptılolit kristalleri .ilasında oluşan lif yapıları görülmektedir

 kusial kafes yapısını onaya kovan du: lıfsu oluşumlar

I Ici hangi bir zeolıt kristalinin en kuçuk yapılınımı SIO4 yada AIO4 dortyuzlusudur Dortyu/lulcrın uzayda değişik biçimde bırleşmcici inden /colıtın kristal yapısı oluşuı I otoğiaf Tdc ust tuf birimi içinde ince taneli yapıya sahip ornekleiden birinde kristal yapısı ile uyumlu lıflcşme görülmektedir

Totograi 1 Mordenıt Liflerinin ikincil Elektron Görüntüsü (4000 \)

Fotoğiaf 3 Kııstal Yapısı ile L'yumlu Lıfleşmenin ikincil Elektron Görüntüsü (4000 X)

O Zincir Şeklmdekr Lıfsı Yapılaşmalar

• Ok ucu seklinde hırtınım bağlı lıfsı yapılaşmalar

Fotoğraf 4'de 1-4 mıkıon genişliğinde, ok şeklinde birbirine bağlı lıfsı oluşumlaı gorulmektedu

308

Fotoğraf 4. Ok Leu Şekilli Lifleşmenin İkincil Elektron Görüntüsü (1500 x)

• Başçık şeklinde oluşan lifsı yapılar.

Fotoğraf 5 de üst tüf biriminin içinde kaba taneli yapıya sahip örneklerden birinde, yaklaşık 10 mikron genişliğinde başak şeklindeki lifleşme görülmektedir.

Fotoğraf 5. Başak Şeklinde Lifleşen Eriyonit Mineralinin İkincil Elektron Görüntüsü (1800 x)

• Düzensiz iplik şeklinde oluşan lifsi yapılar.

Fotoğraf 6'da üst tüf birimi içinde kaba taneli yapıya sahip örneklerden birinde, diğer mineralleri saran 0.2-0.4 mikron genişlikteki mordenit lifleri görülmektedir.

Ijulitsinwi HtvnımıJJc!ı^ı Sa>i/h>:\ tomt /W.\ Izmir l'iirkixe

Fotoğraf 6. İplik Şeklinde Lifleşen Mordcniı Mineralinin İkincil Elektron Görüntüsü (2200

UİAğac. Palı . Şeklinde Oluşan lifsı Yapılar.

Fotoğraf 7'de üst tüf birimi içinde ince taneli yapıya sahip örneklerden birinde yaklaşık 10 mikron genişliğinde oluşmuş ağaç dalı görünümündeki lifleşme görülmektedir.

Fotoğraf 7. Ağaç Dalı Şeklindeki Lifleşmenin İkincil Elektron Görüntüsü (10000 X)

Yukarıda verilen lifsi yapılaşmaların hangi minerale ait olduğunu belirlemek amacıyla yapılan X-lşınımikroprob analizleri Fotoğraf 8. 9. 10'da verilmiştir.

Fotoğraf 8 Enyonıt ve Mordenıt Liflerinin ikincil Elektron Görüntüsü (2400 X)

lotoğiaf 9 lotoğiaf 8'deki Çizgi Boyunca Sı (üstte) ve Al (altta) Dağılımı(2400 X)

Fotoğiaf 10 Fotoğraf 8 deki Çizgi Boyunca Ca (üstte) ve Mg (altta) Dağılımı (2400 X)

Fotoğraf 8'de ust tul bmmı içindeki kaba taneli yapıya sahip bu örnekteki çubuk \e lıfsı yapılı eriyonit \e motdenit mineialleunin ikincil elektron görüntüsü veulmıştu Omek spektral analız yapılabılınmesi için kaibon ile kaplı olduğundan sadece başak şeklindeki euyonit mineialı seçilebilmekte. ıplıksi \apılı mordenit mineialı net goiulememektedu Fotoğraf 3'deki bevaz çizgi boumca v anılan Sı. Al dağılımı i >ioğiaf 9 da Ca., Mg analizleri Fotoğui 10 da \etilmi»tn

Ci7ilge I' ': goulduğu gibi lıfsı yapılaıa sahip zeolit mineialleii içeiisinde sadece euyonit Mg (cermekted) Fotoğiaf lü da goulduzv gibi Mg, I ;,1 yapılaşmalaıın olduğu çizgi u/ennde başak yapısına sahip olan \eide aıtnıaktadiı BÜ nedenle başak vaplı l'Nı mineial euvoni* mineialidii . Mgtiii gonilınedığı gen kalan lıfsı >ap'laı emonittui daha ıncedıı ancak bu ince lıfleı omek inalız amacıyla kaıbonla kaplı olduğundan net olaıak goıulmemektedı Daha net goıuntu almak ıçın omek spektial analizlei bittikten soma Au ile kaplanmıştıı Au ile kaplandıktan soma elde edilen ikincil elektion goiuntusu Fotoğiaf 11 "de veulmıştu Fotoğiaf 1 l'de goiulduğu gibi başak yapısının dışında kalan kısmın tamamı lıfsı yapıda olup. etiyoniften daha ıncedı Omek içindeki olanlalımn a/ olması nedeniyle Vlşını dıfiaksiyon dıvagıamlanıda belulenmesı mumkun olamayan ve enyonıt'ten daha ince olan bu liflei (Mumpton ve dığ 1978) moidenit lifleiidii

3. SONUÇLAR

Bu çalışma, Bigadiç bölgesi zeolıtlı ust tuf biriminden alınan simi h sayıdaki örneklet de geiçekleşti.ilmiştii

310

Endüstriyel Hammaddeler Sempozyumu i 995. İzmir Turktye

Fotoğraf 11. Eriyonit ve Mordenit Liflerinin İkincil Elektron Görüntüsü (1 600 X) (Au Kaplı)

Üst tüf biriminin tamamında ve alt tüf biriminde de lifsi yapılı zeolit minerallerinin bulunup bulunmadığını ortaya koymak için daha çok sayıda ve sistematik olarak alınacak örneklerle çalışma genişletilmelidir. Belirlenen yapılara sahip olan lifsi yapıların dışında daha değişik yapılı ifsi zeolit minerallerine, de rastlanması mümkün olabilir.

Şimdiye kadar bölgede yapılan çalışmalarla belirlenen zeolit minerallerinin oranlanda. yeni yapılacak çalışmalarla değişebilecektir.

4. KAYNAKLAR

Baysal. O. ve diğer., 1985. Bigadiç Borat Havzası Jeolojisi ve Ekonomik Potansiyelinin Tesbit Edilmesi Projesi. H.Ü Yer Bilimleri Uygulama ve Araştırma Merkezi Proje Kodu YUVAM/84/3.

- Baysal. O. ve diğer.. 1986. Bigadiç Zeolit Oluşumlarının Ekonomik Jeolojik İncelenmesi Projesi, H.Ü. Yerbilimleri Uygulama ve Araştırma Merkezi Proje Kodu YUVAM /85/2.
- Köktürk. U.. Gümüş. A. 1995. Bigadiç ve Gördes Zeolitlerinde Belirtenin Lifsi Yapılı Mineraller. (Yayımda).
- Kumbasar. 1.. özkar. S.. 1993. Bigadiç Klinoptilolitli Tüflerin NMR Tekniği ile İncelenmesi. Türkiye Jeoloji Bülteni Cilt 36. Sayı 2.
- Mumpton, FA.. Sand, L.B., 1978. Natural Zeolites, Pergamon Press, New York
- Tsitsishvili, G.V. ve diğer., 1992. Natural Zeolites, Ellis Horwood Limited, New York.