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ABSTRACT
In this study, unrelieved rock cutting experiments were conducted at the linear rock cutting 
machine and the characteristics of tool forces were discussed. The correlations among tool 
forces, specific energy, cutting depth, and rock strength were analyzed using single factor 
regression analysis method. Based on multiple non-linear regression method, the models of 
tool forces and specific energy were developed considering the rock strength and cutting depth. 
The results indicate that models of tool forces have the superior performance. When the model 
of specific energy is analyzed using the compressive strength of the rock, it was seen that the 
correlations are weak compared to the model related to tensile strength of rock. In conclusion, it 
is emphasized that the proposed models presented in this study are particularly recommended 
for performance prediction of soft and medium-hard strength sandstones in case conical picks 
are employed.

ÖZ
Bu çalışmada, doğrusal kesme setinde bağımsız kesme deneyleri yapılmış ve buna göre keski 
kuvvetlerinin karakteristiği tartışılmıştır. Tek faktörlü regresyon analiz yöntemi kullanılarak keski 
kuvvetleri, spesifik enerji, kesme derinliği ve kayacın dayanımı arasındaki ilişkiler analiz edilmiştir. 
Ayrıca, kayacın dayanımı ve kesme derinliği göz önüne alınarak doğrusal olmayan çoklu 
regresyon yöntemiyle keski kuvvetleri ve spesifik enerji modelleri geliştirilmiştir. Sonuçlar, kesme 
ve normal kuvvetleriyle ilgili tüm modellerin oldukça üstün olduğunu göstermiştir. Spesifik enerji 
ile basınç dayanımına bağlı olarak model kurulduğunda ilişki katsayılarının çekme dayanımına 
göre zayıf olduğu belirlenmiştir. Sonuç olarak, bu çalışmada sunulan modellerin yumuşak ve orta-
sert dayanımdaki kumtaşının kalem uçlu keski kullanılarak kazılması durumunda kullanımının 
önerilebileceği vurgulanmıştır.  
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INTRODUCTION

Tool forces and specific energy are two main 
topmost concerns of rock cutting. Tool forces, 
mainly including cutting and normal forces, 
are basic parameters used for calculating the 
torque of cutterhead, motor power, and rock 
cutting efficiency (Bilgin et al. 2012). On the 
other hand, the specific energy is usually used 
for assessing rock cuttability and it is one of 
the most significant parameters used for both 
the performance assessment and efficiency 
evaluation of excavation systems (Rostami et 
al. 1994; Balci et al. 2004; Bilgin et al. 2006; 
Balci and Bilgin 2007). Cutting experiments not 
only are performed to study the effects of cutting 
parameters on the performance of cutting picks, 
but also they are direct methods to obtain the 
accurate values of tool forces and specific energy. 
However, the basic disadvantages are that the 
costs are very expensive and also experiments 
take a long time. Thus, theoretical and semi-
empirical models (Evans, 1984; Roxborugh and 
Liu, 1995; Goktan, 1997; Goktan and Gunes, 
2005; Bao et al., 2011), empirical models (Balci et 
al., 2004; Bilgin et al., 2006; Tiryaki et al., 2010; 
Wang et al., 2017) and numerical models (Su and 
Akcin, 2011; Rojek et al., 2011) are commonly 
used to predict the tool forces and specific energy 
values by engineers in this field. 

A large and growing body of literature has 
investigated that both the physical and 
mechanical properties of the rock and relevant 
cutting parameters have significant influences 
on cutting and normal forces (Copur et al., 2003; 
Balci et al., 2004; Balci and Bilgin, 2007; Tiryaki et 
al., 2010; Shao et al., 2017). 

Evans (1984) theoretically demonstrated that the 
compressive and tensile strength were dominant 
properties of the rock influencing the cutting force 
acting on the conical picks. His cutting model also 
showed that the cutting forces linearly increase 
with the square of cutting depth and decrease 
with the brittleness of the rock. Considering the 
friction between the pick and rock, Roxborugh 
and Liu (1995) and Goktan (1997) improved 
Evans’ cutting force model. Based on Evans’ rock 
cutting mode, Bilgin et al. (2006) found that the 
cutting force in unrelieved cutting mode had a 
strong and statistically linear relationship with the 
cutting depth. Shao et al. (2017) also reported the 
similar test results using one type of rock. 

On the other hand, specific energy, defined as 
the work required to break a unit volume of rock, 
is usually studied based on experimental tests. A 
considerable amount of literature indicate that the 
physical and mechanical properties of the rock 
are the main factors affecting the specific energy 
of rock cutting. In this context, some prediction 
models of specific energy have been developed 
by using single factor regression analysis (Copur 
et al. 2003; Balci et al. 2004; Bilgin et al. 2006; 
Tumac et al. 2007, Gunes et al. 2015), regression 
trees and artificial neural networks (Tiryaki 2009), 
and adaptive hybrid intelligence techniques 
(Yurdakul et al. 2014). 

The main objective of this study is to investigate 
the effect of cutting depth on the performance 
of rock cutting using the conical pick and also 
develop further empirical models considering the 
rock strength and cutting depth. To achieve this 
goal, five different sandstones, which have the 
uniaxial compressive strength ranging from 17.91 
to 85.98 MPa, were subjected to cutting tests at 
the linear rock cutting rig under different levels of 
cutting depths in unrelieved cutting modes. As a 
result of the tests, empirical models of cutting and 
normal forces and specific energy were developed 
using the multiple non-linear regression method. 
The performance of proposed models was also 
statistically analyzed.

1. EXPERIMENTAL STUDIES

1.1. Linear Rock Cutting Test

In the scope of the experimental studies, a small 
scale linear cutting machine (LCM), which can 
accommodate block samples up to150 mm x 150 
mm x 200 mm, was used (Figure 1). 

Figure 1. General view of linear rock cutting machine.



7

Xiang Wang, vd. / Bilimsel Madencilik Dergisi, 2018, 57(1), 5-14

A conical pick is employed in all tests. The main 
cutting and geometrical parameters on the conical 
pick are illustrated in Figure 2. The main body of 
the pick is made of steel while the tip is made of 
tungsten carbide. The conical pick was mounted 
on the tool holder, which is fixed directly to the 
3-D dynamometer to measure the tool forces 
acting on the pick. The data acquisition system 
records the forces and they are processed in 
MATLAB software. After each cutting, rock pieces 
were carefully collected from the rock surface and 
weighed on the scale. Based on the measured 
forces and collected chip masses, the specific 
energy of rock cutting was also determined.

Figure 2. Cutting parameters of conical bit.

In the course of cutting experiments, the attack 
angle (γ) was set to be 55°, while the skew and tilt 
angles were assumed to be 0°. Accordingly, the 
rake angle (α) and the clearance angle (β) were 
calculated to be -5° and 15°, respectively. The 
cutting depth (d) varied from 3 to 18 mm. 

1.2 Physical and Mechanical Properties of 
Rocks 

Sandstones are widely encountered in 
underground excavations and they present a wide 
distribution in terms of strength. Five different 
sandstones were collected from commercial 
quarries in Sichuan province and Chongqing city 
for the cutting tests. (Figure 3).

The physical and mechanical properties of the 
rocks, including density, the uniaxial compressive 
strength and the Brazilian tensile strength were 
determined and the results are listed in Table 
1. The uniaxial compressive strength values 

of the rock samples varied between 17.91 and 
85.98 MPa. The Brazilian tensile strength values 
changed from 1.64 to 4.97 MPa. The friction 
angle between the rock and hardened steel was 
also tested using a special cutter in the LCM. 

Figure 3. Sampling locations of sandstones. 

Table 1. Physical and mechanical properties of rocks.

Rock name
ρ σc σt φ

Sandstone 1 2.22 17.91 1.64 36
Sandstone 2 2.43 79.20 4.97 30
Sandstone 3 2.36 52.99 3.67 42
Sandstone 4 2.35 59.80 3.93 47
Sandstone 5 2.59 85.98 3.69 15

where ρ is the rock density (g/cm3); σc is the 
uniaxial compressive strength (MPa); σt is the 
tensile strength of the rock (MPa); φ is the friction 
angle between the rock and pick.

2. CONSIDERATIONS ABOUT THE TOOL 
FORCES AND SPECIFIC ENERGY

A number of researchers discussed the effect 
of cutting speed before and it was reported that 
cutting speed has not a considerable effect 
during rock cutting, especially in low speeds 
(Nishimatsu 1972; Bilgin et al. 2006, 2012; Copur 
et al. 2017). He and Xu (2015) also analyzed it 
within the ranges of 4-20 mm/s and found that it is 
insignificant neither on tool forces nor on specific 
energy. Therefore, we ignored the effect of cutting 
speed in our tests and assumed to be 13 mm/s 
for the entire cutting experiments in unrelieved 
cutting mode. It has also no influence between 
adjacent cuts as shown in Figure 4. Each cutting 
test was replicated at least three times.
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Figure 4. Characteristic of cuts in unrelieved mode.

2.1. Effect of Cutting Depth on Tool Forces 
and Specific Energy

The cutting and normal forces in the cutting depths 
of 3 and 9 mm are shown in Figure 5. It can be 
observed in Figure 5a that the cutting and normal 
forces exhibit some repetitive patterns in that the 
force increase to a peak value and then drops and 
increase again. The peak forces are approximately 
close to each other which means that the biggest 
chips have more or less the same size. 

(a) d=3 mm

(b) d=9 mm
Figure 5. Tool forces at the 3 and 9 mm of cutting 
depths in unrelieved cutting mode of sandstone 3.

It should be noticed that the distances between 
the peaks of cutting forces for deep cuts are 
longer than those for shallow cuts. This indicates 
that the bigger chips are formed in the process 
of deeper cutting. On the other hand, it can be 
seen that the fluctuation intensity of cutting force 
is much greater than the normal force.

The relationships between mean cutting and 
normal forces and depths of cut are shown in 
Figure 6 for sandstones 1~4. It can be seen that 
there are meaningful relationships as exponential 
functions between mean tool forces and cutting 
depth (R2>0.97), and the correlations are all 
statistically valid at the confidence level of 99 
percent due to having the F-values higher than 
103 and also t-values lower than 0.01. The power 
values of cutting depth in regression equations 
change between 1.112 and 1.326 for mean 
cutting force, 1.023-1.213 for mean normal force. 

(a)

(b)

Figure 6. Correlations between mean tool forces and 
cutting depth.
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The relationship between the specific energy and 
cutting depth is shown in Figure 7. It can be seen 
that the specific energy decreases exponentially 
with increasing cutting depth. The correlations 
are also meaningful (R2=0.907-0.972) and are all 
statistically significant at the confidence level of 
99% since F-values are higher than 38.028 and 
p-values are lower than 0.05. The power values 
of regression equations change between 0.620 
and 0.850.

Figure 7. Relationship between specific energy and 
cutting depth.

2.2. Effect of Rock Strength on Tool Forces 
and Specific Energy

A number of studies have examined that the 
uniaxial compressive and tensile strengths had 
significant influence on cutting and normal force 
and specific energy (Balci et al. 2004; Bilgin et al. 
2006, Wang et al. 2017). 

Figure 8. Relationship between tool forces, specific 
energy and uniaxial compressive strength. 

Figures 8-9 designate that there are weak 
exponential correlations between mean cutting / 
normal forces and uniaxial compressive / tensile 
strengths at the cutting depth of 6 mm. 

As can be seen from Figures 8-9, the uniaxial 
compressive and tensile strengths of the rock 
increased exponentially with increasing the 
specific energy.

Figure 9. Relationship between tool forces, specific 
energy and tensile strength of the rock.

3. EMPIRICAL PREDICTION MODELS BASED 
ON MULTIPLE NON-LINEAR REGRESSION 
METHOD

3.1 Development of Models

Previous and present studies indicate that tool 
(cutting and normal) forces and specific energy 
are mainly influenced by the rock strength and 
cutting depth. Therefore, the cutting and normal 
forces and the specific energy can be expressed 
in Equation 3.1.

energy and uniaxial compressive strength.  
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3.1. 

( ) ncf ntf nf
f c t

ncs nts ns
s c t

FC FN R d

SE R d

σ σ

σ σ −
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⎨

=⎪⎩
             

(3.1) 
where，Rf and Rs are the constants，ncf, ntf, ncs, nts, 
nf and ns are the undetermined coefficients。 

Based on test data, the undetermined coefficients in 
Equation 3.1 can be obtained using multiple 
non-linear regression method. In this context, the 
Levenberg-Marquardt method was used for solving 
the models and all regression models were analyzed 
in SPSS software. The empirical models of cutting 

force are developed as in Equations 3.2-3.4. It can 
be seen that the uniaxial compressive strength of the 
rock and cutting depth are involved in Equation 3.2, 
the tensile strength of the rock and cutting depth are 
involved in Equation 3.3, and the uniaxial 
compressive and tensile strengths of the rock and 
cutting depth are included in Equation 3.4. It should 
also be noted that the statistical relationships are 
very strong for all regression equations due to having 
dramatically high determination coefficients values 
(R2=0.959-0.974).   

𝐹𝐹𝐹𝐹# = 0.019	𝜎𝜎+,.--.	𝑑𝑑..0--   (R2=0.959)        
 (3.2
) 
𝐹𝐹𝐹𝐹# = 0.075	𝜎𝜎3,.454	𝑑𝑑..644 (R2=0.972)           (3.3) 
𝐹𝐹𝐹𝐹# = 0.049	𝜎𝜎+,..89	𝜎𝜎3,.-:6	𝑑𝑑..655(R

2=0.974)     (3.4) 

Furthermore, empirical models of normal force can 
be developed as given in Equations 3.5-3.7 and it is 
clear that all regression equations have very strong 
statistical relationships (R2=0.956-0.978). 

𝐹𝐹𝐹𝐹# = 0.027	𝜎𝜎+,.-40	𝑑𝑑...45 (R2=0.956)         (3.5) 
𝐹𝐹𝐹𝐹# = 0.107	𝜎𝜎3,.:90	𝑑𝑑....0 (R2=0.976)          (3.6) 
𝐹𝐹𝐹𝐹# = 0.072	𝜎𝜎+,..-6	𝜎𝜎3,.898	𝑑𝑑..665(R

2=0.978)    (3.7) 

Moreover, the models of specific energy can be 
purposed as presented in Equations 3.8-3.10. The 
uniaxial compressive strength, the tensile strength of 
rock, and the cutting depth are taken as independent 
variables for the non-linear regression analysis. The 
results specify that the regression equation predicts 
a decrease in specific energy as the uniaxial 
compressive strength of the rock increases. This is 
inconsistent with previous studies although it has a 
relatively high determination coefficient (R2=0.904). 
On the other hand, if the ratio of /c tσ σ  is assumed to 

be the empirical brittleness index, the specific energy 
models can be rewritten as in Equation 3.10.  

𝑆𝑆𝑆𝑆 = 4.274	𝜎𝜎+,.-6.	𝑑𝑑?,.485 (R2=0.660)          (3.8) 
𝑆𝑆𝑆𝑆 = 3.284	𝜎𝜎3..:06	𝑑𝑑?,.:6. (R2=0.870)          (3.9) 
𝑆𝑆𝑆𝑆 = 33.332 𝜎𝜎+/𝜎𝜎3 ?,.489𝜎𝜎3..4,-𝑑𝑑?,.:60 (R2=0.904) 
(3.10) 

According to the equations given above, it is clear 
that both the tool forces and specific energy have a 

        (3.1)

where Rf and Rs are the constants ncf, ntf, ncs, 
nts, nf and ns are the undetermined coefficients

Based on test data, the undetermined coefficients 
in Equation 3.1 can be obtained using multiple 
non-linear regression method. In this context, 
the Levenberg-Marquardt method was used for 
solving the models and all regression models 
were analyzed in SPSS software. The empirical 
models of cutting force are developed as in 
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Equations 3.2-3.4. It can be seen that the uniaxial 
compressive strength of the rock and cutting 
depth are involved in Equation 3.2, the tensile 
strength of the rock and cutting depth are involved 
in Equation 3.3, and the uniaxial compressive and 
tensile strengths of the rock and cutting depth 
are included in Equation 3.4. It should also be 
noted that the statistical relationships are very 
strong for all regression equations due to having 
dramatically high determination coefficients 
values (R2=0.959-0.974).  

energy and uniaxial compressive strength.  
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According to the equations given above, it is clear 
that both the tool forces and specific energy have 
a good agreement with the cutting depth, rock 
strength and value of empirical brittleness index. 
However, more data is necessary so as to verify 
these relationships.

3.2. Testing the Empirical Performance of Models

3.2.1. Models of Cutting and Normal Forces

Statistical analysis of t-test at the confidence 
level of 95% was performed to check whether the 
measured forces are significantly different from 
predicted values. To expand the performance 
prediction of the cutting and normal forces, 
relevant regression curves are plotted. From the 
data and trend lines in Figure 10, it is apparent 
that the Equations 3.2-3.7 are statistically valid.

(a)

(b)

Figure 10. Relationship between measured and 
calculated mean cutting and force.

As can be seen in Figure 10, on the one hand, 
data points calculated by Equations 3.2-3.7 are 
consistently distributed over, above and below 
the line of y=x without any outlying data points. 
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On the other hand, the determination coefficients 
R2 are all greater than 0.90, statistically indicating 
that the models as fitted explains more than 90% 
of the variability in calculated cutting and normal 
forces. The correlation coefficients r, yielded 
by the cutting and normal forces models, are 
all also greater than 0.90, which lead to strong 
relationships between variables. The relationships 
between calculated and measured cutting and 
normal forces are all statistically significant at the 
confidence level of 99% since p-values are lower 
than 0.01.

Additionally, the variance account for (VAF) 
and the root mean square error (RMSE) were 
calculated by Equation 3.11 and Equation 3.12, 
respectively. The results of VAF and RMSE of 
each model are summarized in Table 2.
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 where 
 (3.12) 
where iy  is the measured value, ˆiy  is the 

calculated value, and N  is the number of samples. 
 
Table 2. The VAF and RMSE values and t-test 
results of different prediction models 
 

Model VAF(%) RMSE t-value p-value 
Eq. (3.2) 96.02 0.4414 0.017 0.986 
Eq. (3.3) 97.32 0.3634 0.055 0.957 
Eq. (3.4) 97.48 0.3509 0.003 0.998 
Eq. (3.5) 95.68 0.4344 -0.024 0.981 
Eq. (3.6) 97.65 0.3200 -0.005 0.996 
Eq. (3.7) 97.85 0.3063 0.002 0.999 
Eq. (3.8) 50.88 3.1697 0.045 0.965 
Eq. (3.9) 82.20 1.9579 0.274 0.785 
Eq. (3.10) 86.57  1.6816 0.181 0.857 

 
The interpretation of VAF and RMSE are: the higher 
VAF, the better model performs. VAF of 100% 
means that the measured output has been predicted 
perfectly. VAF of 0 means that the model performs as 
poorly as a predictor using simply the mean value of 
the data (Gunes et al. 2007). The lower RMSE, the 
better model performs. From the data in Table 2, it is 
apparent that the VAF values are generally greater 
than 95.68% while the RMSE values are lower than 
0.4414 for cutting and normal forces models. The 
overall response of these models verify that the 
empirical models of cutting and normal forces exhibit 
a good performance.  
 
3.2.2 Models of Specific Energy 
 
We also conducted t-test to statistically analyze the 
validity of specific energy models. The results of 
t-test reveal that there is no significant difference 
between predicted specific energy given in 
Equations 3.8-3.10 and the measured ones at the 
confidence level of 95%. However, the determination 
coefficient of 0.66 derived from Equation 3.8 resulted 
in relatively poor performance compared with the 
Equations 3.9-3.10. The relationships between 
calculated and measured specific energy are 

presented in Figure 11.  
 

 
Figure 11. Relationship between measured and 
calculated specific energy. 
 
 
It can be seen in Figure 11 that the calculated values 
by Equations 3.8-3.10 are all evenly distributed 
around the trend line. However, the determination 
coefficient of regression equation between 
measured and calculated specific energy by 
Equation 3.8 is 0.661, and VAF and RMSE values 
are 50.88% and 3.1697 respectively, which 
corresponds to Equation 3.8 has a weak prediction 
compared to Equations 3.9-3.10. The VAF and 
RMSE values of Equations 3.9-3.10 are found to be 
82.20%, 1.9579; 86.57%, 1.6816, respectively, 
indicating that Equations 10-11 have good prediction 
performance. However, the effect of rock brittleness 
( /c tσ σ ) on specific energy is uncertain since the ratio 
of /c tσ σ  used in regression analysis change from 

10.93 to 23.30. Therefore, Equation 3.10 should be 
carefully used for examining the specific energy 
when the /c tσ σ  is not in the range. 

 
3.3 Comparison of Empirical Models and 
Theoretical Models of Cutting Forces 
 
Evans (1984) developed a cutting force model for 
conical picks based on tensile failure as presented in 
Equation 3.13. Afterwards, Goktan (1997), 
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where FCE, FCG, FCRL are the peak cutting forces 
(N), cσ  is the compressive strength of the rock 
(MPa), tσ  is the tensile strength of the rock 
(MPa), φ  is the cone angle of the conical pick; ϕ

is the friction angle between the rock and pick; d is 
the cutting depth (mm).  
Goktan and Gunes (2005) proposed a 
semi-empirical cutting force model considering the 
rake angle as shown in Eq. (3.16).  
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where, β is the rake angle  

( )/ 2 / 2β π γ φ= − + ; γ  is the attack angle.  

Based on rock cutting test data, Bilgin et al. (2006) 
found that there was a strong linear relationship 
between the ratio of cutting force to cutting depth 
and the compressive strength of the rock. The 
regression equation is shown as follows.  
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where, FCBm is the mean cutting force.  
 
Based on the rock properties given in the Table 1, 
the cutting force were calculated by Equations 
3.13-3.17. The correlations between measured and 
calculated cutting forces by different models are 
shown in Figure 12.  
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Table 3. t-test results of different prediction models.

Model t-value p-value

Eq. (3.13) -2.684 0.010

Eq. (3.14) 3.734 0.001

Eq. (3.15) -0.317 0.753

Eq. (3.16) 4.462 0.000
Eq. (3.17) 3.131 0.003

It should also be noted that the cutting forces 
calculated by theoretical models and semi-
empirical models are all lower than that of 
measured ones when the cutting depth is 3 mm. 
Therefore, the model of Bilgin et al. (2006) is also 
reliable based on safe considerations. 

CONCLUSIONS

Rock cutting experiments were carried out on 
five different sandstones under different levels of 
cutting depths in unrelieved cutting modes. The 
effects of cutting depth on cutting and normal 
forces and specific energy were discussed in 
detail. Some empirical models were developed 
based on non-linear regression method. The 
main conclusions can be drawn as follows:

1. Exponential function was found for expressing 
the relationships between cutting, normal forces, 
and cutting depth from a statistical perspective. 

2. Empirical models of cutting and normal 
forces were developed considering the uniaxial 
compressive strength, tensile strength and 
cutting depth using non-linear regression method. 
Statistical analysis indicates that all models 
have good prediction performance. Therefore, 
engineers can choose the appropriate model to 
preliminary estimate of the forces according to 
known parameters. 

3. Regression analyses reveal that the empirical 
model of specific energy with respect to uniaxial 
compressive strength and cutting depth has a 
relatively weak performance prediction. However, 
if the tensile strength of the rock is taken into 
consideration in the model, the performance of 
the model represents more reliable results. 
However, the most surprising correlation is 
obtained with the ratio of uniaxial compressive to 
tensile strengths since the model has the best 
performance compared to the other models. 

Additionally, it is reported that the specific energy 
has a good relationship with the brittleness index 
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non-linear regression method. The main conclusions 
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2. Empirical models of cutting and normal forces 
were developed considering the uniaxial 
compressive strength, tensile strength and cutting 
depth using non-linear regression method. Statistical 
analysis indicates that all models have good 
prediction performance. Therefore, engineers can 
choose the appropriate model to preliminary 
estimate of the forces according to known 
parameters.  
 
3. Regression analyses reveal that the empirical 
model of specific energy with respect to uniaxial 
compressive strength and cutting depth has a 
relatively weak performance prediction. However, if 

the tensile strength of the rock is taken into 
consideration in the model, the performance of the 
model represents more reliable results. However, the 
most surprising correlation is obtained with the ratio 
of uniaxial compressive to tensile strengths since the 
model has the best performance compared to the 
other models. Additionally, it is reported that the 
specific energy has a good relationship with the 
brittleness index ( /c tσ σ ). 

 
4. The t-test was carried out to check whether the 
experimental cutting force are significantly different 
from the theoretical models. In this context, it was 
seen that Roxborough and Liu’s model provides the 
best results based on the test data of this study.  
 
It should be noted that the uniaxial compressive 
strengths of the rock samples used for cutting 
experiments vary from 17.91 to 85.98 MPa. 
Therefore, it is emphasized that the models of this 
study are especially suitable to predict the tool forces 
and specific energy of the conical picks while cutting 
from soft to medium-hard strength sandstones.  
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