Türkiye 15 Madencilik Kongresi / IS* Mining Congress of Turkey. Güyaguler, Ersayın, Bılgen(eds)© 1997, ISBN 975-395-216-3

CONDITIONS FOR OBTAINING HIGH QUALITY FELDSPAR PRODUCTS FROM WASTE RAW MATERIALS

Z Ociepa

University of Mining and Metallurgy, Krakow, Poland

ABSTRACT A technological diagram and results of beneficiation of various granite tailings have been presented. It has been proved that one can obtain feldspar-quartz or feldspar products from the raw materials containing about 7-8% alkalies and up to 2,8% Fe₂0i thus satisfying the requirements of glass and ceramic industries in the course of the application of flotation and magnetic separation

1 INTRODUCTION

In Poland, as a result of the exploitation of magma rocks, several millions tons of fine-grained tailings, class below 15 mm or less 5 mm originate a year and they are, at present, only partially utilized Their considerable part is stored m dumps These are mostly granite tailings and they contain about 50 -60% feldspars (about 7 - 8% K_{20} + Na_{20} - the sum of alkalies) and up to about $2{,}8\%$ FeA Granite tailings, depending on the type of rocks, their origin and degree of metamorphosis, are different as far as their chemical and mineral compositions are concerned They contain the quantity and type of feldspars, quartz, micas, clay minerals, oxides and hydrated iron and titanium oxides etc that are different These components, their number and kind do not help the direct utilization of tailings as feldspar raw materials for the glass and ceramic needs The supply of feldspar products with a convenient quality high contents of alkalies, low contents of dyeing compounds, mainly those of iron and titanium, erguires the application of suitable technologies of grading and beneficiation of these raw materials The technological diagrams of processing, apart from size reduction and sieving, 1 e activities helping the products to obtain a suitable granulometnc composition, ought to include also activities helping to

1 Remove the excessive amounts of clny ininciah, c g by washing, kissing and hydraulic classification

2 Remove micas and minerals containing iron and iilamuiu compounds Thus., depending on (lie type of r.iw m.itciial, quantity, kind and lorm of an ocnnfence of mineial admixtures one can apply hyiilaulic classification, beneficiation carried oui on the loncentrating tables, mechanical ubbung of the smlaie magnetic sepaialion, flotation and chemical processing etc Flotation is particularly recommended in the case when the raw materia! contains micas of the muscovite group that cannot be removed as a result of magnetic separation

3 Separate feldspars from quartz m the process of flotation The flotation of feldspars is earned out in the acid environment (pH below 3) in the presence of hydrofluoric acid (HF) as an activator of feldspars and a depiessor of quartz and aliphatic amines as a collector The amount of HF ought to be carefully selected for a griven raw material and it was from about 1400 to 2000 g/Mg of the feed for our raw materials (Ociepa, 1991, 1994, 1996)

4 Increase of the ratio K₂0 do Na?0 (of the module of alkalies) in one of the feldspar products due to the separation of potassium feldspars from the sodium ones and plagioklases in the process of the selective flotation of feldspars or electrostatic separation A selective flotation of feldspars m the solutions of sodium chloride (NaCl), the amount being about 10 of flotation pulp is suggested for oui raw g/dm materials (Ociepa 1977, 1991,1991) The separation of feldspars is possible, however, only when j sufficient separation mixing of the pola-,smm ph.tst, from the sodium ones and calcium has ocuued in (he process of then cryslah/alion If the kld'pirs show a high degree of ptititi/atiou, ihu1 sepaialioii 1s lılllı effective and the. si lei live Hol tum 1, mit icxomiriendul loi sikh 1,.w IIMUH,,!

In the papu d suggislud ihagiaiii ol hunin laiion ot raw materials has been presented as well as icsulls of beneficiation ol granite tailings (coming Sioin different deposites of the Lowei Silesia) while nsmj' the method of flotation and magnetic separation have been shown as examples

2 SUBJECT MATTER AND RESULTS OF INVESTIGATIONS.

The granite tailings coming from the granite massive of the Lower Silesia have been subject to investigations. In most cases it has been a strongly weathered material, grain-size being below 15 mm, containing about 60% of feldspars and considerable amounts of dark minerals, mainly, biotite

These tailings have been subject to the preliminary desludging and, next, size reduction and hydraulic classification- In consequence of these activities, products of the grain size below 0,5 mm or below 0,3 mm have been obtained. The products of the grain size below 0,5 mm were helpful in obtaining the feldspars-quartz flour and, after desludging, were subject to magnetic beneficiation (variant I, Fig. 1)

The material of the grain-size below 0,3 mm was subject to flotation apart from desludging and magnetic separation to obtain feldspar concentrates (variants II and III, Fig 1).

Magnetic beneficiation was carried out twice, in dry conditions, in the disk separator of the Ullrich type, magnetyzing current intensity being 2A.

Flotations have been made in the laboratory impeller flotation machine, capacity of the flotation chamber depending on the need being 3 or 1 dm³, contents of solid parts being 300 or 100 g in 1 dm³ of the flotation pulp depending on the kind of flotation.

In the flotation the following were applied:

- hydrofluoric acid (HF - pH of the pulp about 2,6) which, in this case, performed three it acted as a regulator of the concentration of hydrogen ions, a depressor of quartzand an activator of feldspars, -hydrochloride of dodecylamine (Ci.-H^NFL.Cl), technically pure, as a collector,

- sodium chloride (NaCl) in selective flotations as a depressor of sodium feldspars and plagioclases

The collecting reagent has been applied by portions, along with the decay of flotation The method of dosing of reagents and conditions of flotation have been given in Table 1 containing, as an example, the results of flotation for one of the investigated raw materials

Table 1 includes the results of

- collective flotation with punficaiton of the feldspar concentrate.

- collective flotation with the selective distribution of the collective concentrate m the solution NaCl - 10 g/dm 3 of the pulp,

- selective flotation of feldspars in the presence of NaCl, the amount being 10 g/dm^1 of the pulp.

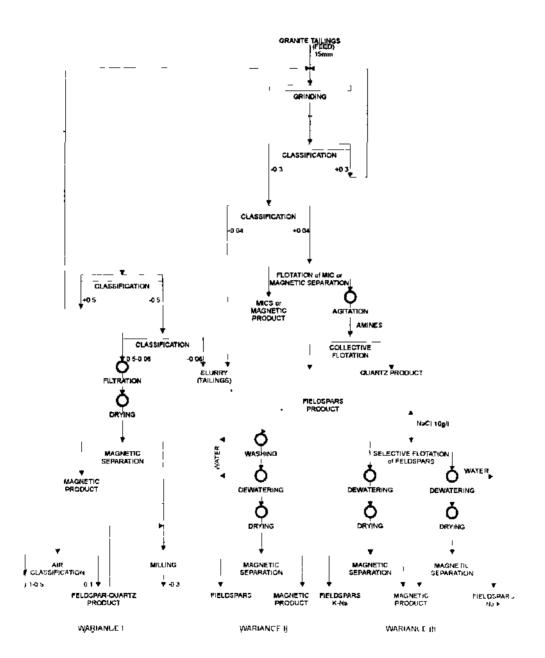
The presented results show that feldspar concentrates containing about or over 10% of alkalies are obtained as a result of flotation from the granite tailings containing about 7% alkalies. The quality and quantity of the obtained concentrates depend on the method and conditions of flotation. For the raw material in question, selective flotation gives a possibility to separate potassium feldspars from sodium ones and plagioclases. As a result of selective • flotation, more diversified concentrates as far as the module of alkalies is concerned - from about 2,9 to 1 (the ratio K_20 to Na_20) are obtained.

In Table 2 the results of magnetic and flotation beneficiation of granite tailings have been listed. The granite tailings come from different deposits of the granite Strzegom-Sobötka and Karkonosze massifs. An analysis of the results of the magnetic beneficiation shows that the decrease of the content Fe_2O_3 to about and less than 0,2% is possible for almost all analyzed wastes. It means that the obtained products as for as the content of iron is concerned satisfy the requirements for the feldspar-quartz flours.

An introduction of the collective flotation helped to obtaining feldspar concentrates containing over 10% of alkalies along with the output of the concentrates over 50% from all investigated raw materials.

The results of the selective flotation while applying NaCl show that the introduction of the selective flotation would not be purposeful for all the granite tailings. From the investigated raw materials, feldspar concentrates of the module of alkalies over 2 have been obtained only from the Gniewkôw and Karpniki tailings (about 2,5 for Gniewkôw and about 2,9-3,6 for Karpniki)

As a result of ihe investigations carried out at the University of Mining and Metallurgy and concerningthe beneficiation of different feldspar raw materials (Dlugosz, Ociepa, 1975,1980, 1994), a schematic diagram of processing operations indispensable for obtaining the feldspar products of the deteimined quality has been suggested


This diagram (Fig 1) takes into account ilic qualitative «imposition . of the raw material, especially, a degree of the pertitization of feldspais The suggested diagram includes tincc

338

Kind of	Amine	Time of		Yield	Contains of	Contains of	Sum of	Mode
flotation	[g/Mg]	flotation	Product	[%)	K ₂ 0 [%]	Na ₂ 0 [%]	alkalies	of alkalies
		[mm]						
		[111111]						
1.			Feed	100.00	4,01	2.93	6,94	1,37
			Tailing	42,66	0,86	1,04	1,90	0,83
1 Collective	325	9.5	Collective					
			concentrate	57,34	6,36	4,34	10,70	1,46
and	Cleaner							
cleaner	flotation-	Î.5	Conce.1	15,57	6,87	3,98	10,85	1,73
flotation	25	1	Cone 2	10,00	7,05	4,38	11,43	1,61
	25	1	Cone. 3	16,00	6,48	4,80	11,28	1,35
	-	-	Tailing	15,67	5,30	4,21	9,51	1,26
II	Collective		Feed	100,00	3,91	2,82	6,73	1,38
Collective	flotation		Tailing	49,04	1,15	1,35	2,50	0,85
and								
selective	300	7.5	Collective					
			cone.	50,96	6,55	4,24	10,79	1,55
flotation	Selective							
Na CI =	flotation	0.5	Conc.l	17,80	8,36	2,90	11,26	2,88
I0g/dm		1.5	Cone.2	10,30	6,90	4,50	11,40	1,53
8/			Tailing	22,86	5,00	5,16	10,16	0,97
III			Feed	100,00	4,05	2,92	6,97	1,38
Selective								
flOta: ion	200	2.5	Conc.l.	18,91	7,38	2,60	9,98	2,84
N a O	100	0.5	Conc.2.	12,27	6,80	4,04	10,84	1,68
1 '' Z İ7	50	2,0	Cone. 3	18,74	5,45	5,45	10,90	1,00
	3?n	5.0	Sum of			,		
			cone.	49,92	6,51	4,02	10,93	1,62
	_	_	Tailing	50.08	1.60	1,82	3,42	0,88

Table I. Results of flotation for granite tailings from Karpniki deposite. pH about 2,6 (HF , about 1400 g/Mg).

No	Evaluated	Feed	Product after ben Product of grain-	Products of	grain si/c	0 3 0 OGmm .illcr
	LValuatou		SIIC	dcsludging,magnet		
	parameter		0,5-0 1 mm after	Collective flotation		
					NaCI- IOg	
			dcsludging	(collective	Concentrae	Concentrate of
			andmagncUc	concentrate of	of	sodinm-polassiuni
			separation	feldspars)	potassium-	feldspars
					sodium	
					feldspars	
1	2	3,	4	5	6	
1 The Karkon		- /		-	-	
	ailings from the Szkl	reka Porcha que	arTv			
			ai i y	0.40	8 22-6 23	ft OS 6 co
	% k-,0	39		6 19		
	% Nd;0	2 85		4,30	4 31-3 59	5 7ft-4 72
		102 17	0,23-0 34	0,22	0 23	
	•: alkal %	6 75		10 49	-> 53-9 82	II 81 11 32
	alk mode	1 37		1,44	1 9i 1 74	1 0S-I 40
	\icd %	100,00		50,40	7 5-2S \	37 24
I? Cir.inile la	ihnps from Ilic Wici<	nkti quarrv				
	% K «	4 84	4 24	5 53-5 78	8 4-6 31	ft 3-5 88
	% Na ₂ 0	3 6ft	2 80	5,05-5 11	4 48-4,16	4 16-6 10
	2	1 55	0 30	03	4 40-4,10	4 10-0 10
	% f-cOj	8 50			12,84-	- 10 46 11 98
	£.ilkal %		7 04	10,58 10 89		
	alk mode	1 32	1 51	1 1 1 13	10 47	1 52-0 97
			-	60 2 56 8	1 87-1 52	38 2 14 0
	Meld %	100(H)	-	00 2 30 0		002 140
	Meld %	100(H)	-		12 9-38 2	
13 (n mile Fr	Meld %	100(11)	-		12 9-38 2	
13 (n mile Fr		4 35	4 28	ab 6 II		S 58-6 1
13 (n mile Fi	om tin. Ksrpntki				12 9-38 2	
13 (n mile Fr	om tin. Ksrpntki % k 0 % N.i-rfi	4 35	4 25	аb 6 п	8 3(> <j 8<="" td=""><td>S 58-6 1</td></j>	S 58-6 1
1 3 (n mile Fr	om tin. Ksrpntki % k 0 % N.i-rfi V I\A	4 35 2 85	4 2S 3 30	ab 6 II ab 4 1	12 9-38 2 8 3(> <j 8<br="">2 9-2 706</j>	S 58-6 1 4 95-3 70
13 (n mile Fr	om tin. Ksrpntki %k0 %N.i-rfi VI∖A ïılkıl '	4 35 2 85 ; 81 7 ⋅≫	4 2S 3 30 0 72 7SS	ab 6 II ab 4 1 0 4 10 10	12 9-38 2 8 3(> <j 8<br="">2 9-2 706 0 IX I M 1? S</j>	S 58-6 1 4 95-3 70 0 23 10 S3 ')8
13 (n mile Fr	om tin. Ksrpntki % k 0 % N.i-rfi V I\A I ılkıl dlk mode	4 35 2 85 ; 81 7 →≈ 1 S3	4 2S 3 30 0 72 7SS 1 29	ab 6 II ab 4 1 0 4 10 10 1 4ft	12 9-38 2 8 3(> <j 8<br="">2 9-2 706 0 IX I M 1? S 2 88 3 6 I</j>	S 58-6 1 4 95-3 70 0 23 10 S3 ')8 1 13 1 CS
13 (n mile Fr	om tin. Ksrpntki %k0 %N.i-rfi VI∖A ïılkıl '	4 35 2 85 ; 81 7 ⋅≫	4 2S 3 30 0 72 7SS	ab 6 II ab 4 1 0 4 10 10	12 9-38 2 8 3(> <j 8<br="">2 9-2 706 0 IX I M 1? S</j>	S 58-6 1 4 95-3 70 0 23 10 S3 ')8
	oom tin. Ksrpntki % k 0 % N.i-rfi V I∖A ï ılkıl dlk mode ∖iUd Vi	4 35 2 85 ; 81 7 →≈ 1 S3	4 2S 3 30 0 72 7SS 1 29	ab 6 II ab 4 1 0 4 10 10 1 4ft	12 9-38 2 8 3(> <j 8<br="">2 9-2 706 0 IX I M 1? S 2 88 3 6 I</j>	S 58-6 1 4 95-3 70 0 23 10 S3 ')8 1 13 1 CS
ll 1 In Sir/Lfi	om tin. Ksrpntki % k 0 % N.i-rfi V I\A ï ılkıl ' dlk mode \iUd M	4 35 2 85 ; 81 7 ⊷ 1 S3 100 00	4 2S 3 30 0 72 7SS 1 29	ab 6 II ab 4 1 0 4 10 10 1 4ft	12 9-38 2 8 3(> <j 8<br="">2 9-2 706 0 IX I M 1? S 2 88 3 6 I</j>	S 58-6 1 4 95-3 70 0 23 10 S3 ')8 1 13 1 CS
ll 1 In Sir/Lfi	om tin. Ksrpntki % k 0 % N.i-rfi V I∖A ï ılkıl ' dlk mode ∖iUd Vi om S ıtıolkn MJSMI JIIIIIJV fimti Ilır di n	4 35 2 85 ; 81 7 ->≪ 1 S3 100 00	4 2S 3 30 0 72 7SS 1 29 87 1(1	ab 6 II ab 4 1 0 4 10 10 1 4ft St (<i>Ahi</i>)	12 9-38 2 8 3(> <j 8<br="">2 9-2 706 0 IX I M 1? S 2 88 3 6 I II S MO</j>	S 58-6 1 4 95-3 70 0 23 10 S3 ')8 1 13 1 CS 79 0 IX S
ll 1 In Sir/Lfi	om tin. Ksrpntki % k 0 % N.i-rfi V I\A ï ılkıl ' dlk mode \iUd Vi om Sıtıolkın MJSMI JIIIIJV fimti Ilır di n	4 35 2 85 ; 81 7 •>× 1 S3 100 00	4 2S 3 30 0 72 7SS 1 29 87 1(1 3 S	ab 6 II ab 4 1 0 4 10 10 1 4ft St (<i>Ahi</i>)	12 9-38 2 8 3(> <j 8<br="">2 9-2 706 0 IX I M 1? S 2 88 3 6 I II S MO 7 U-0 Vd</j>	S 58-6 1 4 95-3 70 0 23 10 S3 ')8 1 13 1 CS 79 0 IX S
ll 1 In Sir/Lfi	om tin. Ksrpntki % k 0 % N.i-rfi V I\A ï ılkıl ' dlk mode ∖iUd Vi om Sittolkn MJSMI JIIIIIJV fimti Ilır din >/, k n V N i (1	4 35 2 85 ; 81 7 •>× 1 S3 100 00	4 2S 3 30 0 72 7SS 1 29 87 1(1 3 S 3 S	ab 6 II ab 4 1 0 4 10 10 1 4ft St (<i>Ahi</i>) 1. O; (I (4 !(SM	12 9-38 2 8 3(> <j 8<br="">2 9-2 706 0 IX I M 1? S 2 88 3 6 I II S MO 7 U-0 Vd 1 ')8 S ><i>i</i>.</j>	S 58-6 1 4 95-3 70 0 23 10 S3 ')8 1 13 1 CS 79 0 IX S
ll 1 In Sir/Lfi	om tin. Ksrpntki % k 0 % N.i-rfi V I\A ï ılkıl ' dlk mode ∖iUd Vi om Sıtıolkın MJSMI JIIIIIJV fimti Ilır di m >/, k n V N i (1 / TUh	4 35 2 85 ; 81 7 •>≈ 1 S3 100 00 1 I n I (ii irr\ 1 Si, t M 1 ≈I .SO I SX	4 2S 3 30 0 72 7SS 1 29 87 1(1 3 S 3 S 3 S t) / 0 t	ab 6 II ab 4 1 0 4 10 10 1 4ft St (<i>Ahi</i>) 1. O; (I (4 !(SM 0 18 0?	12 9-38 2 8 3(> <j 8<br="">2 9-2 706 0 IX I M 1? S 2 88 3 6 I II S MO 7 U-0 Vd 1 ')8 S ><i>i</i>. 0 18</j>	S 58-6 1 4 95-3 70 0 23 10 S3 ')8 1 13 1 CS 79 0 IX S U *9 S 1 I S 11 0 17
ll 1 In Sir/Lfi	om tin. Ksrpntki % k 0 % N.i-rfi V I\A ï ılkıl ' dlk mode ∖iUd Vi om Sittolkn MJSMI JIIIIIJV fimti Ilır din >/, k n V N i (1	4 35 2 85 ; 81 7 →≈ 1 S3 100 00 1 Si, t M 1 >I .S0 I SX (.7/7 21	4 2S 3 30 0 72 7SS 1 29 87 1(1 3 S 3 S	ab 6 II ab 4 1 0 4 10 10 1 4ft St (<i>Ahi</i>) 1. O; (I (4 !(SM 0 18 0? 1 1 11 i; IS	8 3(> <j 8<br="">2 9-2 706 0 IX I M 1? S 2 88 3 6 I II S MO 7 U-0 Vd 1 ')8 S ><i>i</i>. 0 18 i; M</j>	S 58-6 1 4 95-3 70 0 23 10 S3 ')8 1 13 1 CS 79 0 K S U *9 S 1 I S 11 0 17 II /M 0 ? >
ll 1 In Sir/Lfi	om tin. Ksrpntki % k 0 % N.i-rfi V I\A ï ılkıl ' dlk mode ∖iUd Vi om Sıtıolkın MJSMI JIIIIIJV fimti Ilır di m >/, k n V N i (1 / TUh	4 35 2 85 ; 81 7 •>≈ 1 S3 100 00 1 I n I (ii irr\ 1 Si, t M 1 ≈I .SO I SX	4 2S 3 30 0 72 7SS 1 29 87 1(1 3 S 3 S 3 S t) / 0 t	ab 6 II ab 4 1 0 4 10 10 1 4ft St (<i>Ahi</i>) 1. O; (I (4 !(SM 0 18 0?	12 9-38 2 8 3(> <j 8<br="">2 9-2 706 0 IX I M 1? S 2 88 3 6 I II S MO 7 U-0 Vd 1 ')8 S ><i>i</i>. 0 18</j>	S 58-6 1 4 95-3 70 0 23 10 S3 ')8 1 13 1 CS 79 0 IX S U *9 S 1 I S 11 0 17
ll 1 In Sir/Lfi	om tin. Ksrpntki % k 0 % N.i-rfi V I\A ĭ ılkıl ' dlk mode ∖iUd Vi om Sıtıolkın MJSMI JIIIIJV fimti Ilır di n >/, k n V N i (1 / TUh i. ilk il Vi	4 35 2 85 ; 81 7 →≈ 1 S3 100 00 1 Si, t M 1 >I .S0 I SX (.7/7 21	4 2S 3 30 0 72 7SS 1 29 87 1(1 3 S 3 S 3 S t) / 0 t 7 1,	ab 6 II ab 4 1 0 4 10 10 1 4ft St (<i>Ahi</i>) 1. O; (I (4 !(SM 0 18 0? 1 1 11 i; IS	8 3(> <j 8<br="">2 9-2 706 0 IX I M 1? S 2 88 3 6 I II S MO 7 U-0 Vd 1 ')8 S ><i>i</i>. 0 18 i; M</j>	S 58-6 1 4 95-3 70 0 23 10 S3 ')8 1 13 1 CS 79 0 K S U *9 S 1 I S 11 0 17 II /M 0 ? >
ll 1 In Sir/Lfi	om tin. Ksrpntki % k 0 % N.i-rfi V I\A ĭ ilkil ' dlk mode ∖iUd Vi om Sittolkin MJSMI JIIIIJV fimti Ilir di n >/, k n V N i (1 /TUh i. ilk il Vi ilk mode	4 35 2 85 ; 81 7 ->≈ 1 S3 100 00 1 Si, t M 1 ≈I .SO I SX (.7/7 21 1 11 1 07	4 2S 3 30 0 72 7SS 1 29 87 1(1 3 S 3 S 3 S t) / 0 t 7 1,	ab 6 II ab 4 1 0 4 10 10 1 4ft St (<i>Ahi</i>) 1. O; (I (4 !(SM 0 18 0? 1 1 11 i; IS M M 09	8 3(> <j 8<br="">2 9-2 706 0 IX I M 1? S 2 88 3 6 I II S MO 7 U-0 Vd 1 ⁺)8 S ><i>i</i>. 0 18 i; M ▷ -♪></j>	S 58-6 1 4 95-3 70 0 23 10 S3 ')8 1 13 1 CS 79 0 IX S U *9 S 1 I S 11 0 17 II /M 0 ? > 1 >H 0 99
II 1 In Sir/Lfi II 1 fi miti l	oom tin. Ksrpntki % k 0 % N.i-rfi V I∖A ï ılkıl ' dlk mode \iUd Vi om Sıttolkn MJSMI JIIIIJV fimti Ilır din >/, k n V N i (1 <i>/ TUh</i> i ilk il vî ilk mode Mild %	4 35 2 85 ; 81 7 ->≈ 1 S3 100 00 1 Si, t M 1 si, t M 1 ≈i .SO I SX (.7/7 21 1 11 1 07 11)0 00	4 2S 3 30 0 72 7SS 1 29 87 1(1 3 S 3 S 3 S t) / 0 t 7 1,	ab 6 II ab 4 1 0 4 10 10 1 4ft St (<i>Ahi</i>) 1. O; (I (4 !(SM 0 18 0? 1 1 11 i; IS M M 09	12 9-38 2 8 3(> <j 8<="" td=""> 2 9-2 706 0 IX I M 1? S 2 88 3 6 1 II S MO 7 U-0 Vd 1')8 S >i. 0 18 i; M ▷ - →> 1 1/1 W</j>	S 58-6 1 4 95-3 70 0 23 10 S3 ')8 1 13 1 CS 79 0 IX S U *9 S 1 I S 11 0 17 II /M 0 ? > 1 >H 0 99
II 1 In Sir/Lfi II 1 fi miti l	oom tin. Ksrpntki % k 0 % N.i-rfi V I∖A ĭ ılkıl ' dlk mode \iUd Vi om Sittolkn MJSMI JIIIIJV fimti Ilır din >/, k n V N i (1 <i>/ TUh</i> i ilk iI VÎ ilk mode Mild %	4 35 2 85 ; 81 7 ⋅>≈ 1 S3 100 00 1 S1, t M 1 S1, t M 1 ≫I .S0 I SX (.7/7 21 1 11 1 07 11)0 00	4 2S 3 30 0 72 7SS 1 29 87 1(1 3 S 3 S t) / 0 t 7 1, 1 0	ab 6 II ab 4 1 0 4 10 10 1 4ft St (<i>Ahi</i>) 1. O; (I (4 !(SM 0 18 0? 1 1 11 i; IS M M 09 S W 11 0	12 9-38 2 8 3(> <j 8<br="">2 9-2 706 0 IX I M 1? S 2 88 3 6 I II S MO 7 U-0 Vd 1 ')8 S ><i>i</i>. 0 18 i; M ▷ →> 1 1/1 W \> WI 6</j>	S 58-6 1 4 95-3 70 0 23 10 S3 ')8 1 13 1 CS 79 0 IX S U '9 S 1 I S 11 0 17 II /M0?> 1 >H 0 99 14 i ;x0
II 1 In Sir/Lfi II 1 fi miti l	om tin. Ksrpntki % k 0 % Ni-rfi V I\A ï ılkıl ' dlk mode \iUd V om S itiolkn MJSMI JIIIIJV fimti Ilir di n >/, k n V N i (1 / TUh i. ilk il Vi ilk mode Mild % iilni),s İnim tin (ino	4 35 2 85 ; 81 7 ->« 1 S3 100 00 1 I n1 (ii irr\ 1 Si, t M 1 ≫l .SO I SX (.7/7 21 1 11 1 07 11)0 00 vikim (JIMMY 1 X	4 2S 3 30 0 72 7SS 1 29 87 1(1 3 S 3 S t) / 0 t 7 1, 1 0 1 9(1	ab 6 II ab 4 1 0 4 10 10 1 4ft St (<i>Ahi</i>) 1. O; (I (4 !(SM 0 18 0? 1 1 11 i; IS M M 09 S W 11 0 (. n 7 <i>H</i>	12 9-38 2 8 3(> <1 8	S 58-6 1 4 95-3 70 0 23 10 S3 ')8 1 13 1 CS 79 0 IX S U *9 S 1 I S 11 0 17 II / M 0 ? > 1 >H 0 99 14 i ;x0 7 70 7 !<
II 1 In Sir/Lfi II 1 fi miti l	om tin. Ksrpntki % k 0 % N.i-rfi V I\A ï ılkıl ' dlk mode \iUd Vi om S ıtıolkın MJSMI JIIIIJV fimti Ilır di n >/, k n V N i (1 / TUh i. ilk il Vî ilk mode Mild % iilni),s İnim tin (ino k II Ni 0	4 35 2 85 ; 81 7 →× 1 S3 100 00 1 I n1 (ii irr\ 1 Si, t M 1 ×I .SO I SX (.7/7 21 1 11 1 07 11)0 00 vikim (JIMMY 1 X t (.	4 2S 3 30 0 72 7SS 1 29 87 1(1 3 S 3 S 3 S t) / 0 t 7 1, 1 0 1 9(1 ! Xf	ab 6 II ab 4 1 0 4 10 10 1 4ft St (<i>Ahi</i>) 1. O; (I (4 !(SM 0 18 0? 1 1 11 i; IS M M 09 S W 11 0 (. n 7 <i>H</i> i ?(> <i>t m</i>	12 9-38 2 8 3(> <j 8<br="">2 9-2 706 0 IX I M 1? S 2 88 3 6 I II S MO 7 U-0 Vd 1 ')8 S ><i>i</i>. 0 18 i; M ▷ →> 1 1/1 W \> WI 6</j>	S 58-6 1 4 95-3 70 0 23 10 S3 ')8 1 13 1 CS 79 0 IX S U '9 S 1 I S 11 0 17 II /M0?> 1 >H 0 99 14 i ;x0
II 1 In Sir/Lfi II 1 fi miti l	om tin. Ksrpntki % k 0 % N.i-rfi V I\A ï ılkıl ' dlk mode \iUd Vi om S ıtıolkın MJSMI JIIIIJJV fimti Ilır di n >/, k n V N i (1 / TUh i. ilk il Vi ilk mode Mild % iilni),s İnim tin (ino k II Ni 0 ' K 0,	4 35 2 85 ; 81 7 →× 1 S3 100 00 1 S, t M 1 sl,	4 2S 3 30 0 72 7SS 1 29 87 1(1 3 S 3 S 3 S t) / 0 t 7 1, 1 0 1 9(1 ! Xf 0 n	ab 6 II ab 4 1 0 4 10 10 1 4ft St (<i>Ahi</i>) 1. O; (I (4 !(SM 0 18 0? 1 1 11 i; IS M M 09 S W 11 0 (. n 7 <i>H</i> i ?(> <i>t.m</i> (1 i	12 9-38 2 8 3(> <j 8<="" td=""> 2 9-2 706 0 IX I M 1? S 2 88 3 6 I II S MO 7 U-0 Vd 1')8 S >i. 0 18 i; M > →> 1 1/ 1 W \> WI 6 11 r>r-i⁻ 1 ! 1 'J</j>	S 58-6 1 4 95-3 70 0 23 10 S3 ')8 1 13 1 CS 79 0 IX S U *9 S 1 I S 11 0 17 II /M 0 ? > 1 >H 0 99 14 i ;x0 7 70 7 I< 6 0 7 Cf. <
II 1 In Sir/Lfi II 1 fi miti l	om tin. Ksrpntki % k 0 % N.i-rfi V I\A I ılkıl ' dlk mode \iUd Vi om Sıtıolkın MJSMI JIIIIJV fimti Ilır di n >/, k n V N i (1 / TUh i. ilk il Vi ilk mode Mild % iilni),s İnim tin (ino K II Ni 0 K K 0, ; ikıi	4 35 2 85 ; 81 7 →× 1 S3 100 00 1 Si, t M 1 si, SO I SX (.7/7 21 1 11 1 07 11)0 00 vikim (JIMMY 1 X t (. -> 7 8 1	4 2S 3 30 0 72 7SS 1 29 87 1(1 3 S 3 S t) / 0 t 7 1, 1 0 1 9(1 ! Xf O N S h>	ab 6 II ab 4 1 0 4 10 10 1 4ft St (<i>Ahi</i>) 1. O; (I (4 !(SM 0 18 0? 1 1 11 i; IS M M 09 S W 11 0 (. n 7 <i>H</i> i ?(> t. m (1 i p \> n HI	12 9-38 2 8 3(> <j 8<="" td=""> 2 9-2 706 0 IX I M 1? S 2 88 3 6 I II S MO 7 U-0 Vd 1')8 S >i. 0 18 i; M > ->> 1 1/1 W > WI 6 11 r >r-i⁻ 1 ! 1 'J 1 -114 1</j>	S 58-6 1 4 95-3 70 0 23 10 S3 ')8 1 13 1 CS 79 0 K S U *9 S 1 I S 11 0 17 II /M 0 ? > 1 >H 0 99 14 i ;x0 7 70 7 !< 6 0 7 Cf. < n ;/ H H;
II 1 In Sir/Lfi II 1 fi miti l	om tin. Ksrpntki % k 0 % N.i-rfi V I\A I ilkıl ' dlk mode \iUd Vi om Sıttolkın MJSMI JIIIIJV fimti Ilır di n >/, k n V N i (1 /TUh i. ilk il Vi ilk mode Mild % iilni),s İnim tin (ino k II Ni 0 ' K 0, ; ikıi ill miwli	4 35 2 85 ; 81 7 →× 1 S3 100 00 1 SI, t M 1 ×I .SO I SX (.7/7 21 1 11 1 07 11)0 00 vikim (JIMMY 1 X t (. -> 7 8 1 1 1/	4 2S 3 30 0 72 7SS 1 29 87 1(1 3 S 3 S t) / 0 t 7 1, 1 0 1 9(1 ! Xf 0 N S h> 1 1	ab 6 II ab 4 1 0 4 10 10 1 4ft St (<i>Ahi</i>) 1. O; (I (4 !(SM 0 18 0? 1 1 11 i; IS M M 09 S W 11 0 (. n 7 <i>H</i> i ?(> <i>t</i> . <i>m</i> (1 i p \> n HI M ' 1 ;«	12 9-38 2 8 3(> <j 8<="" td=""> 2 9-2 706 0 IX I M 1? S 2 88 3 6 1 II S MO 7 U-0 Vd 1')8 S >i. 0 18 i; M > →> 1 1/1 W > W1 6 11 r>r-i⁻ 1 ! 1 J 1 -114 1 M 1 },J</j>	S 58-6 1 4 95-3 70 0 23 10 S3 ')8 1 13 1 CS 79 0 IX S U *9 S 1 I S 11 0 17 II /M0?> 1 >H 0 99 14 i ;x0 7 70 7 !< 6 0 7 Cf. < n ;/ H H; 1 !) II
II 1 In Sir/Lfi II 1 fi miti l	om tin. Ksrpntki % k 0 % N.i-rfi V I\A I ılkıl ' dlk mode \iUd Vi om Sıtıolkın MJSMI JIIIIJV fimti Ilır di n >/, k n V N i (1 / TUh i. ilk il Vi ilk mode Mild % iilni),s İnim tin (ino K II Ni 0 K K 0, ; ikıi	4 35 2 85 ; 81 7 →× 1 S3 100 00 1 Si, t M 1 si, t M 1 si, t M 1 si, t M 1 si, t M 1 si, SO I SX (.7/7 21 1 11 1 07 11)0 00 vikim (JIMMY 1 X t (. -> 7 8 1	4 2S 3 30 0 72 7SS 1 29 87 1(1 3 S 3 S t) / 0 t 7 1, 1 0 1 9(1 ! Xf O N S h>	ab 6 II ab 4 1 0 4 10 10 1 4ft St (<i>Ahi</i>) 1. O; (I (4 !(SM 0 18 0? 1 1 11 i; IS M M 09 S W 11 0 (. n 7 <i>H</i> i ?(> t. m (1 i p \> n HI	12 9-38 2 8 3(> <j 8<="" td=""> 2 9-2 706 0 IX I M 1? S 2 88 3 6 I II S MO 7 U-0 Vd 1')8 S >i. 0 18 i; M > ->> 1 1/1 W > WI 6 11 r >r-i⁻ 1 ! 1 'J 1 -114 1</j>	S 58-6 1 4 95-3 70 0 23 10 S3 ')8 1 13 1 CS 79 0 K S U *9 S 1 I S 11 0 17 II /M 0 ? > 1 >H 0 99 14 i ;x0 7 70 7 !< 6 0 7 Cf. < n ;/ H H;

[i^Liic I I lowslitct developed to pioduce feldspar of required quality

technological series that can be treated, when dependent on needs, as three different beneficiation variances. In the case of processing of a feldspar mineral of fine-grained structure and a high degree of feldspar pertibzation, a system of activities including classification and magnetic separation presented m the series I, that ensures the obtaining of feldsparquartz product will be convenient. Introducing the flotation (variance II, Fig. 1) one can also obtain feldspar concentrates of high contents of alkalies from this kind of mineral. For feldspar minerals that are characteristic for their high grade of demixing of potassium feldspars from sodium feldspars and plagioklases in the crystallization phase, the variance III (Fig. 1) with the selective flotation of feldspars has been suggested. This series creates a possibility of obtaining several concentrates distinctly diversified as far as the contents of sodium and potassium feldspars are concerned. In each of the suggested variances of processing, hydraulic classification is planned and it has two purposes: ensurance of a suitable granulometric composition of products and removal of the so-called sludge fraction, that is, fine grains less than 40 or 60 um. The separation of this fraction whose yield reaches sometimes 25% and its treatment as tailings at the present stage of investigations are imposed by technological and economic considerations. In this fraction ferme minerals, products of granite weathering which, if not removed, make the separation of feldspars from quartz complicated causing a decrease in the quality of feldspar concentrates.

3.SUMMARY

The results of investigations show that feldsparquartz or feldspar concentrates satisfying standard requirements can be obtained from granite tailings depending on the assumed method and conditions of beneficiation. The investigations showed that the quality of the concentrates is dependent not only on the accepted method of beneficiation but also on the quality and type of the beneficiated raw material. The kind of feldspars occurring in the raw material, their structure and degree of pertitization are decisive for the course and results of flotation. Depending on the type of the raw material and accepted conditions of flotation, feldspar concentrates containing from about 8 to 15% of alkalies, the module of alkalies being from about 1 to 3 and about or below 0,2% Fe₂0₃ can be obtained from granite tailings containing about 7 -8% of alkalies and up to about 2,8% of Fe'Oj-

4.REFERENCES

Dlugosz W., Ociepa Z. 1975 Granite tailings as raw material for the production of feldspar concentrates,. Zesz.Nauk. AGH no 541, Gômictwo z 81.

Ociepa Z., 1977 Selective flotation of feldspars in the solution of non-organic salts. Doctoral thesis. AHG - Krakow.

Dlugosz W., Ociepa Z, 1980 Beneficiation of tailings after the production of building materials and aggregates from granite, syenodiorite and melaphires. Mat. XIV Krakowskiej Konf. Przerôbki Kopalin, Jaszowiec.

Ociepa Z. 1991 Determination of the conditions of obtaining high quality feldspar concentrates from the Karpniki granite Gosp. Sur. Min. vol. 7, no. 3.

Ociepa Z- 1994 Comparative evaluation of granite tailings as raw materials for the production of feldspar concentrates. Gosp. Sur. Min vol.10, no. 3.

Ociepa Z. 1996 Chemical composition of feldspars from Dolny Slask deposits and their floatability in the solutions of aliphatic amines. Physicochemica! Problems of Mineral Processing, 30.

342