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ABSTRACT: This paper explores the manner in which orthogonal transformed indicator methods (OTIM) 
handle with anisotropy in stochastic simulation. In orthogonal transform, three decomposition algorithms are 
considered: Spectral, Symmetric and Cholesky-Spectral. Using a simulated deposit with anisotropy ratio 1/3, 
all three algorithms are evaluated in terms of grade variogram and grade-tonnage curves reproduction. 

1 INTRODUCTION 

Conditional cumulative distribution function (ccdf) 
plays an important role in geostatistical estimation 
and sequential simulation. Indeed, data-dependent 
optimal estimations are computed from conditional 
distribution functions and sequential simulations are 
obtained randomly drawing from conditional 
distribution functions. A variety of method for 
estimating conditional distribution functions is 
suggested. These are classified as parametric and 
nonparametric. This study İs concerned with 
nonparametric approach, especially orthogonal 
transformed indicator method of this approach. The 
conditional distribution functions and their 
nonparametric estimation are described in Goovaerts 
(1997) and Tercan and Kaynak (1999). 

Orthogonal transformed indicator method 
(Tercan, 1999) İs a compromise between the two 
extremes of indicator cokriging and indicator 
kriging. It requires less estimation and modelling 
over indicator cokriging and uses more information 
over indicator kriging. The idea behind this 
approach is to transform the indicator functions into 
a set of spatially orthogonal functions (factors) and 
to use the autokrigeability property of these 
functions. Orthogonalization of indicator function 
relies on principally the decomposition of the 
indicator variogram matrices as a matrix product. 

Despite the aforementioned advantages of OTIM, 
the approach may be problematic when the variable 
studied reveals an anisotropic structure. Indeed, it İs 
not possible to construct the indicator variogram 
matrices anisotropically because they are estimated 
either omnidirectionally or in a particular direction. 
The purpose of this study is to investigate how the 

conditional distribution functions obtained using 
orthogonal transformed indicator methods work in 
geostatistical simulation in the presence of 
anisotropy. In the estimation of conditional 
distribution function, three decomposition 
algorithms are considered; Spectral (SPEC), 
Symmetric (SYMM) and Cholesky-Spectral (CHSP) 
decomposition. For comparison, indicator knging 
(INDI) is also used. 

Geostatistical simulations are mainly used for 
generation of equi-probable alternative realizations 
of mineral grade and geologic features with 
specified histogram and variogram. Typically, these 
realizations are fed into a transfer function 
developed as a logical equivalent of mineral deposit. 
By processing multiple equiprobable realizations 
through the transfer function, an equivalent number 
of responses are obtained, i.e. a response 
distribution. This distribution of responses provides 
a probabilistic assessment of the uncertainty 
associated with the input variable (Jourael, 1989). In 
the present study, the decomposition algorithms are 
evaluated in this setting. First of all, the ability of the 
decomposition algorithms in reproducing anisotropic 
variograms is examined. Two transfer functions are 
defined; proportion and average of grade values 
above a specific cutoff, yielding grade-tonnage 
curves as responses. The uncertainty of grade 
tonnage curves is assessed by the distribution of 
responses for each algorithms. 

2 SEQUENTIAL SIMULATION 

Consider the simulation of variable grade Z at N grid 
nodes xn conditional to the data set [z(Xa), ct=l,...,n]. 
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Sequential simulation (Journel and Alabert, 1988; 
Gomez-Hernandez and Srivastava, 1990) amounts to 
modelling the conditional distribution function then 
sampling it at each of the grid nodes visited along a 
random sequence. When a nonparametric approach 
is considered an indicator-based method is used. To 
ensure reproduction of the grade variogram model, 
each ccdf is made conditional not only to the 
original n data but also to all values simulated at 
previously visited locations. Multiple realizations 
are obtained by repeating the entire sequential 
drawing process Sequential simulation starts with 
the transform of an indicator vector into the spatially 
orthogonal factors. 

3 CASE STUDY 

Figure 1 shows the spatial distribution of 2500 
conditionally simulated values on a 50 \ 50 m 
regular grid at a level of Kure (Asikoy) copper 
deposit and hereafter considered as reference values 
for subsequent work. 

Figure 1 The spatial distribution of reference data sel 

Figure 2 A frequency distribution of reference data set 

The simulated annealing algorithm given in 
GSLIB (Deutsch and Journel, 1998) was used to 
force the realization to match an anisotropic 
spherical vanogram with nugget effect 0.3, partial 
sill 2.1 and range 38 m in NS direction and 12 m m 

EW direction. Figure 3 and 4 show frequency 
distribution and variograms of the reference data set. 

Figure 3 The experimental and input vanograms of the 
reference data set m the NS and EW directions 

The purpose of this study is to evaluate the 
decomposition algorithms in the presence of 
anisotropy under perfect conditions. So the problem 
of statistical inference of the variogram functions 
will not be addressed here Instead, the variogram 
models deduced from reference (2500 data) 
information are used. 

As there are no economic and technical 
restrictions, the nine cutoff values corresponding to 
the nine deciles of the reference distribution are 
used: these are; 0.46, 0.60, 0.73, 0 82, 1.10, 1.20, 
1.44,2.15 and3.21. 

Factor variograms were computed for nine cutoff 
values. As the order of the CHSP and SPEC factors 
gets higher, the range of spatial correlation decreases 
and essentially vanishes for the sixth factor in the 
NS direction and for the third factor in the EW 
direction. However, the variogram of the SYMM 
factors does not display any decrease in spatial 
correlation. All the factor variograms with a spatial 
correlation were modelled with a geometric 
anisotropy model with a larger range in the NS 
direction (these variograms are not shown here). 

One hundred realisations of grade were generated 
using each of the three decomposition algorithms 
and also indicator simulation. The first realizations 
are shown in Figure 4. SISIM given in Deutsch & 
Joumel (1998) is modified in order to handle with 
OTTM. 

Figure 5a-b show experimental variograms of the 
100 realizations for each of algorithms. These 
figures indicate that there are large discrepancies 
(fluctuations) between input and realization 
variograms for all algorithms. This is an expected 
result since simulation from an indicator-derived 
(either indicator or orthogonal transformed indicator 
kriging) ccdf guarantees reproduction of indicator 
variogram for the cutoffs Zk considered not the grade 
variogram. In theory, the reproduction of the grade 
variogram is guaranteed only if indicator cokriging 
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with infinite number of cut off values are used as 
pointed out by Armstrong & Dowd (1994) and 
Deutch & Joumel (1998). 

Neither sequential orthogonal transformed 
indicator simulation (SOTIS) nor sequential 
indicator simulation (SIS) seems to reproduce 
anisotropy well (Figure 5). This may be related to 
smaller number of grid nodes (2500) and smaller 
size of simulation area respect to the longer range of 
input anisotropic variogram model (ratio being 1/5 
only). However, one obvious result is that SOTIS 
works as good as SIS in reproduction of anisotropic 
variogram. 

Also note that realization variograms have higher 
nugget effect than the input variogram model. This 
high nugget is a result of the discretization 
procedure used in indicator approach. Indeed 
nonparametric techniques are applied at K 
discretization cutoffs Zk and they provide ccdf s for 
these cutoff values only. In stochastic simulation, it 
is necessary to complete ccdf for all values other 
than K. discretization cutoffs zk The conditional 
distribution functions are completed by interpolating 
between ccdf values and extrapolating beyond them. 
However, the interpolation / extrapolation of ccdf 
values is done independently from one location to 
another. This makes simulated grade values within 
the same class ( z u , Zk) spatially uncorrected. 
Consequently, whatever the number of cutoffs, the 
sequential realizations have high nugget variances as 
a result of this artificial noise within classes. OTIM 
is no exception and shares the same property. 

Estimated conditional distribution function may 
not satisfy the order relations of a valid distribution 
function. For example, cdf value may be less than 0 
or greater than 1 or they may be decreasing with 
increasing cutoff values. When order relations 
violations occur, they must be corrected. These 
corrections for order relations do not impact the 
reproduction of the grade variogram but the 
indicator variogram. Indeed experience shows that 
the SYMM algorithm produces significiantly less 
order relations than other algorithms but the SYMM 
fluctuations do not differ much from those of other 
algorithms. 

3.1 The response distributions 

The proportion and average of the values above the 
nine cutoffs corresponding to the nine deciles of the 
reference distribution are calculated first for the 
reference data set and then for each realization. 
Figure 6 shows the response distnbution for the 
proportion (tonnage) while Figure 6 presents the 
response distribution for the average (mean grade) 
for SOTIS and also SIS. In these figures, the 
response distributions at each cutoff are presented 
using box-plots. In addition, the true proportion and 

Figure 4 First realizanon of ihe spatial distribuions generated 
by three decomposition algorithms and indicator kngmg 

average values calculated from the reference 
distribution are marked with ' * ' in these figures. 
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AH the algorithms can be said to be accurate since 
the response distibutions of both proportion and 
average contain the true values. Common to all the 
decomposition algorithms and indicator approach is 
an increase in variability of the averages with 
increasing cutoff. However, for the distribution of 
the proportion, the increase is seen only at and 
around median cutoff (1.1). Above all, all the 
algorithms yield similar uncertainty distributions. 

One reason for this is the high number of 
conditioning data (2500) used in simulation. As this 
number decreases, one may expect largest 
differences between algorithms. 

4 CONCLUSIONS 

Although the conclusions that can be drawn from 
this study are specific to the data set studied, it is 
clear that sequential simulations based on orthogonal 
transformed indicator method reproduce anisotropic 
variograms as good as sequential indicator 
simulation algorithm. There seems to be no big 
difference between the decomposition algorithms 
when considering the distribution of grade tonnage 
curves. This is due to the high number of 
conditioning data. A similar study should be done 
with no conditioning data in order to see the 
differences between algorithms. 
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H (b) 
Figure 5 (a) Vanograms of the realizations for INDI, SPEC, SYMM and CHSP in NS direction, (b) Vanograms of the realizations 
for INDI, SPEC, SYMM and CHSP in EW direction 
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Figure 6 The uncenainity distribution for the proportion Figure 7 The uncertamity distribution for the a\erage 
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