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AIMS AND SCOPE 

Scientific Mining Journal, which is published in open access electronic environment and in printed, is 
a periodical scientific journal of Union of Chambers of Turkish Engineers and Architects Chamber of 
Mining Engineers. The name of the journal was “Mining” until June 2016 and it has been changed to 
“Scientific Mining Journal” since September 2016 because it can be confused with popular journals 
with similar names and the ISSN number has been updated from 0024-9416 to 2564-7024.

Scientific Mining Journal, published four times a year (March-June-September-December), aims to 
disseminate original scientific studies which are conducted according to the scientific norms and 
publication ethics at national and international scale, to scientists, mining engineers, the public; and 
thus to share scientific knowledge with society. The journal is in English.

The journal covers theoretical, experimental, and applied research articles, which reflects the findings 
and results of an original research in the field of mining engineering; review articles, which assess, 
evaluates, and interprets the findings of a comprehensive review of sufficient number of scientific 
articles and summarize them at present information and technology level; technical notes, which may 
be defined as a short article that describes a novel methodology or technique; a case studies, which 
are based on the theoretical or real professional practice and involves systematic data collection and 
analysis.

The journal gives priority to works that will enable the advancement of current available information 
necessary to serve humanity with nonrenewable mineral resources with the perspective of sustainable 
mining principles. In this context, mine exploration, mineral resource modeling, surveying, mine 
economics and feasibility, geostatistics, rock mechanics and geotechnics, diggability studies, 
underground and surface mining, mine design, support design in underground mines and tunnels, 
rock penetration and rock fragmentation, mine production planning and pit optimization, mine 
health and safety management, mine ventilation, methane emission and drainage in underground 
coal mines, mineral processing and beneficiation, process mineralogy, analytical techniques, mineral 
comminution, mineral classification and separation, flotation/flocculation, solid/liquid separation, 
physical enrichment methods, hydro and biometallurgy, production metallurgy, modeling and 
simulation, instrumentation and process control, recycling and waste processing, mining law, 
environmental health and management, transportation, machinery and equipment selection and 
planning, coal gasification, marble technology, industrial minerals, space mining, submarine mining 
and mechanization are included in the journal content.

Submitted manuscripts are evaluated by the editorial board and expert referees independently in 
accordance with the best practices in academic publishing. The publishing rights of the manuscripts, 
approved for publication at the end of the evaluation process, are transferred to the Chamber of Mining 
Engineers by the authors.
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A B S  T R A C T

a Niğde Ömer Halisdemir University, Engineering Faculty, Mining Engineering Department, 51240 Niğde, TÜRKİYE

Glycerin represents the primary by-product of biodiesel generation when vegetable oil is transesterified with ethanol or methanol. It is essential 
to study how to prevent natural resource depletion and transform waste into usable and valuable products. Using glycerin as a grinding aid can 
be an alternative solution for utilizing the excess glycerin resulting from biodiesel production. This paper investigated the usability of unrefined 
glycerin as a grinding aid in the dry grinding of marble wastes in terms of grinding efficiency while planning to reduce the adverse impacts of waste 
on the environment via its efficient utilization. The dry grinding experiments conducted within the study’s scope researched the impacts of five 
dosages (0%, 0.25%, 0.5%, 1%, and 2% by weight) on the product. The current research is promising in terms of preventing the depletion of natu-
ral resources and transforming waste into usable and valuable products. Furthermore, considerable enhancements were obtained in the grinding 
performance with the grinding aid utilized. 

Keywords: Marble waste, Mineral filler, Dry grinding, Grinding aid, Recycling
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Introduction

Like all industrial activities, the adverse influence of 
marble dust wastes (MDW) on the environment consti-
tutes a problem, and waste management is also inevitable 
in natural stone plants. Moreover, industries have a social 
responsibility to protect the environment and ensure that 
natural resources are used sustainably. For a sustainable 
economy, environmental protection must accompany in-
dustrialization and utilizing natural resources (Mymrin, 
1997). Nowadays, the need to turn to alternative materi-
als is increasing daily due to developing technology, com-
petition from industry, and the rapid consumption of the 
Earth’s resources. The most crucial step in achieving the 
said balance is to ensure the reuse of the waste generat-
ed in one area within the same area, in another industrial 
sector, or for another aim, e.g., as a filler instead of calcite. 
MDW contains a high amount of calcium carbonate (El-
Sherbiny et al., 2015). The excess CaCO3 ratio in the chem-
ical composition of MDW expands its usage area and pro-
vides the opportunity for its use instead of calcite, which is 
highly needed in the industry. Particle size is desired from 

1-2 μm to 50-100 μm according to the sector used (DPT, 
2001). Alyamac and Ince (2009) and Tunc (2018) reported 
the reuse of waste marble in the paper, plastic, chemical, 
glass, and fertilizer industries and construction activities. 
Nayak et al. (2022) assessed the physical and mechani-
cal properties of MDW-filled polyester composites and 
reported that MDW was highly compatible as a potential 
filler in polyester resin up to 32% by weight. To use MDW 
as a filler instead of calcite, it must have a high degree of 
hydrophobicity and be able to be ground to ultrafine sizes. 
The prominent properties of composites are attributed to 
a small particle size, thus resulting in a large interface area 
and high surface energy of nanoparticle fillers, leading to 
strong interfacial adhesion between fillers and the poly-
meric matrix (Zhang et al., 2010). Bringing these wastes to 
the desired size is one of the most energy-consuming and 
costly processes. Improvements, albeit small, to be made at 
low costs in grinding processes consuming a lot of energy 
will provide significant economic benefits. Size reduction 
processes are highly affected by the physical and chemi-
cal conditions of the grinding medium. The inefficiency of 
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grinding, especially in dry grinding, is generally explained 
by the slowing effect caused by fine particles. This may 
originate from the regrowth or rebuilding of particles from 
smaller particles as a result of either agglomeration, includ-
ing van der Waal’s forces, or direct briquetting, or coating 
of balls for the purpose of providing soft surfaces (Austin 
et al., 1984; El-Shall and Somasundaran, 1984; Locher and 
Seebach, 1972; Orumwense and Forssberg, 1992). The use 
of chemical additives represents an economical alterna-
tive for industrial applications. The utilization of chemical 
additives does not influence the breakage of coarse mate-
rial. However, it only becomes a factor when fine materi-
al is built up in the mill (Locher and Seebach, 1972). It is 
necessary to add chemicals under conditions that cause 
chemisorption on particles’ surfaces and utilize a sufficient 
amount of additives with the objective of creating the ad-
sorbed layer on the whole area of fine particles generated 
in the course of grinding. The impact of additives is reduc-
ing the van der Waal’s adhesion force between fine parti-
cles, thus ensuring more effective breakage interactions 
between grinding media and particles through a mecha-
nism that is not completely understood and reducing the 
formation of agglomerate in cases when this constitutes a 
problem. The adsorbed additive also provides improved 
powder flowability (Fuerstenau, 1995). Although grinding 
aids provide efficiency and reduce energy costs, they create 
a separate cost item since they are generally imported from 
abroad. In this context, as an alternative to these expensive, 
imported grinding chemicals, various waste/by-products 
are important in reducing costs and evaluating waste.

By-products and waste products can be grinding aids 
for effective size reduction and minimizing energy con-
sumption. Using grinding aids, it is possible to increase the 
amount of production with the wanted product fineness, 
and a finer product can be obtained in an identical amount 
of production. There are many studies in the literature on 
the usability of various wastes and by-products as grind-
ing aids. Gao et al. (2011) investigated whether utilizing 
beet molasses as a grinding aid for blended cement with 
high volumes of mineral admixtures was viable. Beet mo-
lasses (0.01–0.05% by weight of cement) was added at 
various ratios into a blended cement. Concerning the per-
formance of the blended cement, beet molasses led to a 
higher compressive strength at 3 days and 28 days. Li et 
al. (2016) tried waste cooking oil (WCO) as a grinding aid 
while grinding cement clinker and gypsum. The findings 
demonstrated that WCO considerably enhanced cement 
grinding. In another study, Li et al. (2015) used recycled 
beet molasses as a grinding aid in cement generation. The 
results revealed in detail that the recycled beet molasses 
contributed to clinker grinding and improved other cement 
properties. Leoneti et al. (2012) investigated the utilization 
of glycerol, a by-product of biodiesel generation in Brazil. 
They stated that glycerol was used as one of the grinding 
chemicals, especially in the form of commercial mixtures. 
However, the mentioned glycerin has limited use because 
it is accepted as an unrefined raw material, which should 
be refined for its utilization in the future. Generally, 10 kg 
of glycerol is created as a by-product of each 100 kg of bio-
diesel generated (Chi et al., 2007). The study by Karinen 
and Krause (2006) showed that biodiesel generation pro-
duced almost 10% of glycerol by volume.

Reducing environmental problems from waste genera-
tion to its irresponsible disposal is based on the adequate 

use of wastes in appropriate environments. Managing 
waste on a global scale is an essential and important strat-
egy since it has become a critical factor for people, animals, 
and vegetation (Sabine, 2013). The nature, amount, and 
type of waste vary from country to country. Helping to pre-
serve the quality of the environment and health requires 
looking for an effective way to manage waste appropriately. 
For these purposes, waste must be recycled, reused, and di-
rected to a valuable and usable product. These days, the use 
of waste is a priority for sustainable development success. 
In this respect, it is necessary to investigate wastes pro-
duced in natural stone processing plants as mineral fillers 
in terms of both using these wastes and eliminating their 
negative environmental effects. The purposes of this paper 
are to investigate the effect of glycerin on the grinding effi-
ciency of MDW. Experimental results were assessed based 
on several product properties like particle size distribution 
(d50), size reduction (F90/P90), grinding media coating, and 
energy consumption. This study is important since, to the 
best of our knowledge, it is the first study in the literature 
that compares the usability of by-products as grinding aids 
on the waste calcitic and dolomitic marble in mineral filler 
production.

1. Materials and methods

1.1. Materials

There are two subclasses of marble, calcitic (CaCO3) 
and dolomitic (CaMg(CO3)2). The current research utilized 
Afyon white (calcitic) marble and Aydın yellow (dolomit-
ic) marble wastes (Figure 1). After drying waste samples 
in an oven at a temperature of 60 °C to a constant weight, 
the feed size (< 2 mm) required for the conventional ball 
mill was produced, which was crushed in two stages with 
a jaw and hammer crusher. Canada Acme Lab analyzed the 
chemical properties of the marble wastes utilized in the 
above-mentioned tests by employing the ICP-MS method. 
Table 1 presents the materials’ chemical content.

Figure 1. The appearance of Afyon white (calcitic) marble and Aydin yellow 
(dolomitic) marble dust 
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Figure 3. FT-IR spectrum of the grinding aid

1.2. Methods

Marble wastes were ground in a type of a Standard-01 labora-
tory batch mill produced by Union Process (USA) (Figure 4). Table 
2 summarizes the technical specifications of the stirred ball mill. 
The grinding tank is equipped with a water jacket to ensure cool-
ing. It is necessary to eliminate the heat produced in the course of 
grinding with circulating cooling water via the grinding container 
jacket. A Rev 2580 voltomat-meter (Rev Ritter GmBH, Deutsch-
land) was utilized to measure the energy the mill consumed. Table 
3 summarizes the experimental conditions.  

Figure 4. Laboratory-scale vertical stirred ball mill

 
 
 
 
 

Table 1. ICP-MS elemental analysis of the calcitic and dolomitic marble wastes (in wt%)

Sample CaO MgO SiO2 Al2O3 Fe2O3 MnO Na2O K2O Cr2O3

Afyon white 55.86 0.36 0.29 0.05 <0.04 <0.01 0.02 0.02 <0.002
Aydın yellow 30.56 21.21 0.09 0.03 0.24 0.01 0.01 <0.01 <0.002

Test samples with an average particle size of d50=16.9 µm for 
calcitic marble and d50=17.8 µm for dolomitic marble were used 
in grinding studies (Figure 2). The unit weights of calcitic marble 
powder (ɣs = 2.68 g/cm3) and dolomitic marble powder (ɣs = 2.78 
g/cm3) were determined with a pycnometer (ASTM D 854-02). 
High-density (6000 kg/m3) yttria-stabilized zirconia (ZrO2) grind-
ing media purchased from Cenotec Co., Ltd., Korea, were used in 
the ultrafine grinding experiments.
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Figure 2. Particle size analysis of the samples used in the experiments

Unrefined glycerin, a light yellow transparent liquid, is ob-
tained while producing biodiesel. Glycerin was provided by the 
Kolza Biodizel Fuel and Petrol Products Inc. A Bruker Vertex 70 
Fourier-Transform Infrared Spectrometer (FTIR) was used to 
characterize the grinding aid in the range of 4000–400 cm-1.

Figure 3 shows the FT-IR spectrum of the grinding aid. Glyc-
erin is a complex organic material with different types of polar 
groups. There are evident O-H stretching vibration peaks at 3600-
3200 cm-1 and the contribution of the broadband of -OH with ab-
sorption varying between 3000 and 3500 cm-1 was also detected. 
These polar hydroxyl groups in its structure provide good grind-
ing performance. C-H stretching vibrations are observed at a wave 
number of 2925 cm-1. A shoulder at 2853 cm–1 is attributed to the 
C–H symmetrical stretching vibration of the aliphatic CH2 group 
(Zhang et al., 2016), the band observed at 1740–1653 cm-1 stands 
for C=O stretching vibrations found in aromatic groups, and the 
obvious stretching vibration of the free fatty acid carbonyl group 
is observed at 1030-1200 cm–1. 
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Table 2. Technical specifications of the vertical stirred ball mill

Property Value

Motor speed (max.) 600 rpm

Tank height 12.3 cm

Tank diameter 8.04 cm

Shaft type Pin

Shaft length 26.6 cm

Number of pins 4

Table 3. Experimental conditions used in the dry grinding of marble wastes

Parameter Value

Ball filling ratio, (J) 65

Powder filling ratio, (fc) 0.125

Grinding time, (min) 75

Mill speed, (rpm) 600

Ball size distribution 3 mm (50%) and 

5 mm (50%)
Grinding aid dosage, (by weight %) 0, 0.25, 0.5, 1, and 2

Equation 1 is used to calculate the ball filling ratio (J). This 
parameter indicates how much of the volume is filled with media 
using a bed porosity of 0.4 (Austin et al., 1984); the value equals 
100%.

J =				"#$$	%&	'()*#	(,-)/0(1$*23(,-/456)
"*77	8%79'(	(456)

× ;.=
=.>

         (1)                                                                                                                                                                                               

 

fc = 	"#$$	%&	B%C)(-	(,-)/D%C)(-		)(1$*23(,-/456)
"*77	8%79'(	(456)

× ;.=
=,>

       (2)                                                                                                                  

 

 

𝐸𝐸5(𝑘𝑘𝑘𝑘ℎ/𝑡𝑡)=			KLKM				
5N	

     (3)             

	

                          (1)                                                                                                                                                                                              

Likewise, the ratio of the mill volume filled with solids ratio 
(fc) is explained by Equation 2.

J =				"#$$	%&	'()*#	(,-)/0(1$*23(,-/456)
"*77	8%79'(	(456)

× ;.=
=.>

         (1)                                                                                                                                                                                               

 

fc = 	"#$$	%&	B%C)(-	(,-)/D%C)(-		)(1$*23(,-/456)
"*77	8%79'(	(456)

× ;.=
=,>

       (2)                                                                                                                  

 

 

𝐸𝐸5(𝑘𝑘𝑘𝑘ℎ/𝑡𝑡)=			KLKM				
5N	

     (3)             

	

           (2)                                                                                                                 

The measurement of the energy consumption in the course of 
the dry grinding process was performed for the purpose of assess-
ing the efficiency of the grinding process. 

J =				"#$$	%&	'()*#	(,-)/0(1$*23(,-/456)
"*77	8%79'(	(456)

× ;.=
=.>

         (1)                                                                                                                                                                                               

 

fc = 	"#$$	%&	B%C)(-	(,-)/D%C)(-		)(1$*23(,-/456)
"*77	8%79'(	(456)

× ;.=
=,>

       (2)                                                                                                                  

 

 

𝐸𝐸5(𝑘𝑘𝑘𝑘ℎ/𝑡𝑡)=			KLKM				
5N	

     (3)             

	

                                                                   (3)

Where denotes the product mass of marble wastes, E is the en-
ergy used at the time t, and  is the no-load energy.

2. Results and discussion

2.1. Product fineness

First, the influence of glycerin dosage on grinding was investi-
gated under constant mill parameters, as shown in Figure 5, using 
the particle sizes d50 for calcitic marble (left side) and dolomitic 
marble (right side).

Figure 5 obviously shows that with the addition of glyc-
erin, the d50 size becomes narrower in comparison with the 
no-aid condition. Glycerin consists of a chain of three car-

bon atoms where each carbon atom is bonded to a hydrogen 
atom (+H) and a hydroxyl group (-OH). Furthermore, it is all 
highly adsorbed by polar -OH groups. However, the d50 size 
increased beyond the dosage of 0.5% for calcitic marble and 
dolomitic marble. Generally, this is not surprising since this 
phenomenon is called “negative grinding,” known as the 
re-agglomeration of fine particles (Hasegawa et al., 2001). 
Similar results to this study were obtained in the studies 
by Katircioglu-Bayel and Toghan (2022) on waste eggshell, 
Toraman (2012) and Çayirli (2018) on calcite, and Oksuzo-
glu and Ucurum (2016) on gypsum.

Figure 5. Influence of the grinding aid concentration on the d50 size

Except for the d50 size, Figure 6 shows the influence of 
the grinding aid dosage on size reduction (F90/P90) for cal-
citic marble (left side) and dolomitic marble (right side). 
Glycerin had higher size reduction ratios than the no-aid 
condition. The size reduction ratio increases with an in-
creasing dosage up to 0.5% for calcitic and dolomitic mar-
ble and then decreases. As the grinding aid dosage increas-
es (after optimal dosage), the distance between particles 
changes with the contribution of repulsive and attractive 
forces and the thickening of the adsorption layer (Prziwara 
et al., 2018).

Figure 6. Influence of the grinding aid concentration on the d50 size

2.2. Grinding media coating
The coating of grinding media with waste products was de-

tected by weighing it after 30 s of dry sieving. Figure 7 shows the 
coating values according to the decrease and increase of coating 
on grinding media. 

The grinding media coating without any additives was 
83 and 15 g/m2 for calcitic and dolomitic marbles, respec-
tively. The results for all dosages show that the coating of 
grinding media with the product decreased dramatically. 
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Figure 7. Grinding media coating of calcitic and dolomitic marble

2.3. Energy consumption
It is known that the fineness of the product obtained as 

a result of grinding is proportional to the energy consumed. 
One way to increase the grinding energy efficiency in ultra-
fine grinding is to use grinding additives. Tuunila (1997), 
Wang and Forssberg (1995), Zheng et al. (1997), Choi et al. 
(2010), and Choi and Wang (2007) planned to increase the 
grinding and energy efficiency with the addition of appro-
priate chemicals. The results obtained in this study are in 
agreement with previous studies in the literature.

The influence of the grinding aid dosage on energy con-
sumption was investigated, as shown in Figure 8, for calcitic 
marble (left side) and dolomitic marble (right side).

Figure 8. Energy consumption of calcitic and dolomitic marble

Concerning the experimental results, energy consumption 
for calcitic marble, which was 192 kWh/t without additives, de-
creased to 120 kWh/t with the use of glycerin. Thus, 72 kWh/t 
energy savings were achieved. The energy consumption for dolo-
mitic marble, which was 192 kWh/t without additives, decreased 
to 136 kWh/t. Thus, 56 kWh/t energy savings were achieved in 
dolomitic marble. The specific energy consumption improved with 
grinding additives (Katırcıoğlu-Bayel, 2018).

Conclusions

This study identified the effects of glycerin on product 
fineness, energy consumption, and grinding media coat-

ing. Based on the results, the following conclusions can be 
drawn:

(1) Adding glycerin improved the product fineness com-
pared to the no-aid condition. The increase in grinding aid 
dosage from 0 to 0.5% decreased the d50 particle size from 
10.3 to 4.9 µm for calcitic marble and from 6.1 to 2.7µm 
for dolomitic marble. However, the re-agglomeration phe-
nomenon was observed again, and the d50 particle size was 
increased. The same results were obtained for the size re-
duction ratio. 

(2) The grinding media coating without any additives 
was 83 and 15 g/m2 for calcitic and dolomitic marbles, re-
spectively. The results for all concentrations show that the 
coating of grinding media with the product decreased dra-
matically. 

(3) The specific energy consumption improved with 
grinding additives. Moreover, as the amount of grinding 
aids increased, energy consumption decreased. This posi-
tive impact of grinding aids on energy consumption could 
be attributed to the ease of powder flow.

With this study, it was understood that calcitic and do-
lomitic marble samples could be dry ground to ultrafine 
sizes in a laboratory-scale vertical stirred mill. As a result, 
unrefined glycerin was identified as an excellent quality ad-
ditive improving the grinding performance of marble waste. 
A study was carried out to shed light on the fact that it could 
be used in alternative products in grinding processes where 
imported grinding chemicals were generally used.
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The traditional way of coal production and management is still predominant in the Indian coal mining industry which has led to a widespread waste 
of resources both materials and humans. Operational loss of the mining machinery and equipment is one of the key factors for the low performance 
and productivity of mines. This research presents an application of the integrated approach of the Mine Production Index (MPi) and Ishikawa 
Diagram in an Indian coal mine to study the bottleneck equipment in the mining operation among the fleet of shovels, trucks (dump trucks), and 
dozers. Mine Production Index (MPi) identifies the bottleneck equipment in the mining operation, and Ishikawa Diagram presents the Root Cause 
Analysis of bottleneck equipment. The Fuzzy Analytical Hierarchy Process (FAHP) is used to determine weights for MPi calculation using informa-
tion gathered from a group of 11 experts through structured interviews. The study found that the dozer fleet is the bottleneck equipment and the 
ineffectiveness of the dozer fleet can be grouped into 4 categories as enumerated on the Ishikawa diagram. The study proposes that the ineffective-
ness of the dozer fleet can be improved with an increase in its performance rate. The study is based on the judgments of the experts for the case 
mine, which may limit the external validity. This paper is an original contribution to the analysis of mining equipment using the Mine Production 
Index and Ishikawa Diagram in an Indian coal mine.
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Introduction

The traditional way of the coal production process is still pre-
dominant in the Indian coal mining industry  which has led to 
widespread waste of resources for both materials and humans. 
Operational losses for machinery and equipment such as losses 
due to breakdown, waiting time during set-up, adjustments and 
small stops, defects, over-processing, and rework are the main 
factors affecting the performance and productivity of the ma-
chines and equipment. Operational loss is one of the major fac-
tors for the low productivity of the Indian coal mining industry 
despite augmenting investment, introducing updated equipment, 
and improving labor intensity. The Indian coal mining industry is 
no exception; despite augmenting investment, introducing updat-
ed equipment, and improving the labor intensity in recent years. 
The management of bottlenecks is key to reducing costs and re-
maining competitive in the global market. The concept of “lean 

mining” in the Indian coal mining industry is put forward in this 
paper through the application of the Mine Production Index (MPi) 
and Root Cause Analysis (RCA) using the Cause and Effect Dia-
gram (Ishikawa diagram). Although there is considerable litera-
ture available about lean application in the mining industry, a few 
authors address the practical applications of lean in mines.

MPi addresses the issues of poor performance and low pro-
ductivity by identifying bottleneck equipment in mining opera-
tions. MPi was introduced in 2014 and is an extension of Overall 
Equipment Efficiency (OEE) with the introduction of weight for 
each factor considering some operational constraints in the min-
ing industry (Lanke et al., 2014). OEE is a Key Performance Index 
(KPI) that can be used to determine the overall performance of 
an industry. Availability, utilization, and performance rate are the 
parameters that form the product of MPi and are calculated as fol-
lows:
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= (Ava x Utb x Ppc)                                                                                (1)

where Av is Availability, Ut is utilization and Pp is performance 
of the equipment.

a, b, and c are weights such that 0 < a, b, c <1 and ∑(a, b, c) = 1

Several Multi-Criteria Decision Making(MCDM) tools such as 
the Analytical Hierarchy Process (AHP), Fuzzy Analytical Hierar-
chy Process(FAHP), Weighted Sum Model(WSM),Technique for Or-
der of Preference by Similarity to Ideal Solution(TOPSIS),ELimina-
tion and Choice Expressing REality (ELECTRE), etc. can be used 
for determining the weights of the factors used in the MPi formula. 
In this study, Fuzzy AHP is used to calculate the weights of the fac-
tors for calculating the MPi of mining machines to study its overall 
effectiveness.

There are many productivity-related issues in the mining in-
dustry due to the inherent mining work environment and varying 
degrees of assignable causes such as inefficiency of manpower or 
machinery. RCA for productivity-related issues is an essential step 
for any multi-stage production process (Wilson et al., 1993). RCA 
is a step-by-step process of identifying causal factors using com-
prehensive and system-based review techniques aimed to provide 
the focal root causes of problems and to develop action plans with 
measurement strategies to resolve the problem. Cause and Effect 
Diagram (CED), also known as Fishbone or Ishikawa Diagram, is 
an RCA tool that can be used to identify and organize the possible 
causes for a particular single effect (Wilson et al., 1993).

The main objectives of this paper are:

· To identify the bottleneck equipment in a mining oper-
ation in an Indian coal mine through the application of MPi.

· RCA of bottleneck equipment using a cause and effect 
diagram.

The subsequent sections present a literature review on the 
background of MPi to concisely describe its key advantages over 
OEE. This is followed by the background of AHP, Fuzzy AHP, Root 
cause Analysis, and Ishikawa diagram. In section 3, the method-
ology adopted for the study is discussed where the stepwise de-
termination of weights of the factors using FAHP is shown which 
is followed by steps of cause and effect diagram in the subse-
quent section. The next section presents the illustration of a case 
study. The final section presents discussions on the key results 
followed by the conclusions, limitations, and directions for fu-
ture research. 

2. Literature Review

2.1. Mine Production Index 

Mine Production Index is an operational measure for the min-
ing sector which is an extension of the OEE concept by assigning 
different weights to the traditional OEE components (Lanke et al., 
2014). It helps in identifying the bottleneck and its root causes in 
mining operations reliably. The literature review reveals that MPi 
evaluates not only effective equipment but also the effect of assess-
ment factors on the effectiveness (Lanke et al., 2016). Availability, 
utilization, and performance rate, which are considered important 
criteria for determining mining equipment productivity, form the 
product of.

The availability rate is defined as the ratio of the available 
shift/planned time for production to the total available shift/ 
planned time (Elevli and Elevli, 2010). It considers the downtime 
such as breakdowns and waiting times due to set-ups, mainte-
nance actions, adjustments, etc. 

Availability=(Total available shift or planned time for produc-
tion - total downtime)/(Total available shift or planned time for 
production)                    (2)

Performance rate is defined as the ratio of actual output from 
a machine to the rated output (Elevli  and  Elevli, 2010). It is used 
for the assessment of decreased performance and operational ef-
ficiency of machines due to reduced machine speed or delays in 
cycle time, etc. 

Performance rate= (Actual output from a machine (satisfying 
quality standard)/(Rated output (during the time machine is op-
erating))                   (3)

The utilization of equipment is defined as the ratio of the time 
in hours the machine is used in a year to the total hours which 
can be either total annual Scheduled Shift Hours (SSH) or total Ma-
chine Available Hours (MAH) in a year (Arputharaj, 2015).

Utilisation= (Actual hours used in a year)/(Total annual SSH 
or total MAH in a year)                                                                              (4)

2.2. Analytic Hierarchy Process 

The Analytic Hierarchy Process was developed by Saaty (1980) 
and is one of the most widely used MCDM tools to assist complex 
decision-making. AHP is a method that structures the decision 
problem into a hierarchical level by eliciting pair-wise comparison 
that indicates the relative importance of all criteria or alternatives 
using a 9-point scale (Saaty, 1980). AHP has been applied in var-
ious decision-making environments like to prevent child sexual 
abuse in schools (Lundberg and Dangel, 2019); develop weighting 
system (Kamaruzzaman et al., 2018); management effectiveness 
(Pendred et al., 2016), and machine tool configurations (Farhan 
et al., 2016).

2.3. Fuzzy Analytic Hierarchy Process

In AHP, the relationships of the factors are based on the subjec-
tive judgment of the experts which are expressed in crisp values. 
Thus, the relationships may be imprecise as it is hard to estimate 
our judgments by specific numerical values and the results may 
misguide in decision-making. Although AHP is an accomplished 
tool for the assessment of problems, Fuzzy theory can be integrat-
ed into AHP to increase the sensitivity of the AHP method with 
fuzziness situations. The combination of fuzzy concepts and AHP 
is called fuzzy AHP (FAHP). 

2.3.1. Fuzzy Set Theory

The fuzzy set was introduced by Zadeh in 1965 (Zadeh,1965) 
as an extension of the classical notion of a set whose elements 
have degrees of membership. A classical bivalent set, called a crisp 
set, evaluates in binary terms according to a condition i.e. an el-
ement either belongs or does not belong to the set while a fuzzy 
set defines a degree of belonging to the possible individual in the 
universe of discourse by assigning a value representing its degree 
of membership in the fuzzy set. So, fuzzy set theory can be used in 
solving complex problems to measure uncertainty in human in-
sight and implication.

2.3.2. Triangular Fuzzy Number 

Let X be a universe of discourse having its generic elements  
Y, or Y = {y1, y2, y3…..,yn}. A fuzzy set F in Y is characterized by a 
membership function,  (Y), which maps Y to the membership space 
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2010), etc. The drawbacks of the Ishikawa diagram are highly ex-
pert-driven, considerable manpower requirements in the form of 
expert teams to conduct the analysis, and insufficient explanation 
of possible strategies for mitigating the root causes (Guerin, 2015; 
Reid et al., 2012).

3. Research Methodology

In this study, an integrated approach of FAHP for MPi calcula-
tion and CED for RCA has been used. The structured interview is 
used to collect information and knowledge from the experts for 
developing the pairwise comparison matrices to determine the 
weights for MPi evaluation of mining machines. A total number of 
11 experts, 8 from the mining sector (from the case study mine) 
and 3 from academic institutions with substantial experience 
were consulted and asked to respond to the importance of each 
factor on a scale of 1 to 9 using an interview questionnaire. In the 
next stage, the cause and effect analysis method are done to inte-
grate experts’ knowledge for a possible solution to the bottleneck. 
In this study, cause and effect analysis is done through personal 
observations, consensus building, and semi-structured interviews 
with a cross-functional team of 15 employees from different de-
partments of the mine.

3.1. Steps of Fuzzy AHP

The various steps adopted in this study are discussed below:

Step 1: The first step of FAHP is to construct a pairwise com-
parison matrix with the data collected from z experts for the n fac-
tors using Saaty’s 9-point scale. For each expert, an nxn non-neg-
ative pairwise comparison matrix is constructed. Each pairwise 
comparison matrix is also checked for consistency.

Step 2: The pairwise comparison matrices are converted into 
fuzzy comparison matrices using the corresponding characteristic 
(membership) function as shown in Table 1. 

Table 1. Characteristic function of the fuzzy numbers.

Fuzzy number Characteristic (membership) function
(1, 1, 2)
(x-1, x,  x + 1) for x = 2, 3, 4, 5, 6, 7, 8
(8, 9, 9)

1/ (1/2,1, 1)

1/ [{1/(x+1)}, (1/x),  {1/(x - 1)}] for x = 2, 3, 4, 5, 6, 7, 8

1/ (1/9, 1/9, 1/8)

The membership function is TFN and thus requires fuzzy aggre-
gation to achieve a favorable result from the responses of experts. 
In our study, fuzzy comparison matrices are aggregated by the 
geometric mean method. The aggregated fuzzy comparison matrix 
for Z number of experts is represented by	A#$ = (p#$, q#$, r#$), where 
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-
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                      (6)

                           (7)

[0, 1]. A fuzzy number F is defined as a triangular fuzzy number 
(TFN) parameterized by the triplet (p, q, r) with peak value q, left 
width p > 0, and right width r > 0, if its membership function has 
the following form (Khaba and Bhar, 2017; Cheng, 1999):

μF(Y)= (y-p)/(q-p)   p ≤y ≤q

            (β-p)/(β-q)   q ≤y ≤r                 (5)

The membership function is defined in Figure 1.

Figure 1. A triangular fuzzy number F.

Fuzzy AHP has been applied in various decision-making en-
vironments like raw material criticality assessment (Kim et al., 
2019); network access of mobile applications (Mowafi et al., 
2019); health symptom checking system (Huang et al., 2018); clin-
ical decision support system (Nazari et al., 2018); prioritizing the 
solutions of lean implementation (Belhadi et al., 2017); water 
loss management (Zyoud et al., 2016); analysis of reverse logis-
tics implementation (Prakash et al., 2015); machine tool evalua-
tion (Ayag and Gurcan Ozdemir, 2012); failure modes and effects 
analysis (Kutlu and Ekmekçioğlu, 2012); supplier selection (Beik-
khakhian et al., 2015; Shaw et al., 2012, Yu et al., 2012); partner’s 
selection within a green supply chain (Lee et al., 2011); mining 
equipment selection (Kesimal and Bascetin, 2002). The extent 
analysis method is one of the extensively used fuzzy weighing and 
prioritizing methods due to its simplicity and efficiency (Chang, 
1996) while the centre of gravity is one of the widely used meth-
ods of defuzzification (Kang et al., 2010), and both the approaches 
are applied in this study. Other methods include centroid (Lee et 
al., 2010) and α-cut (Buckley and Qu, 1990). 

2.4. Cause and Effect Diagram

Cause and Effect Diagram (CED), 5 Whys, Interrelationship Di-
agram (ID), Multi Vari Analysis, and the Current Reality Tree (CRT) 
are some of the RCA tools that help in identifying the root causes of 
problems (Duggett, 2004). RCA tools have been used for studying 
failure to improve patient safety (Kellogg et al., 2017); factors con-
tributing to cancer-related suicide (Aboumrad,et al., 2018). Cause 
and effect diagram (CED), also known as Fishbone or Ishikawa 
Diagram is used to identify and organize the possible causes for 
a particular single effect (Wilson et al., 1993). In the CED, the po-
tential causes are often organized into 4 key groups for identifying 
the root cause- manpower, materials, machinery, and methods in 
the manufacturing sector while people, policies, equipment, and 
procedures for the service sector. Many studies have used the Ishi-
kawa diagram for diagnosing the root causes of different indus-
trial problems such as productivity losses in mining equipment 
(Papic et al., 2016); minimizing rejection of raw materials (Ahmed 
and Ahmad, 2011), equipment unreliability (Sharma and Sharma, 
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Step 3: The next step is the defuzzification of the aggregated 
fuzzy comparison matrix into crisp scores using the defuzzifica-
tion method for testing consistency. In this study, the Centre of 
Area (COA) method is applied for defuzzification by using the fol-
lowing equation:

 
 

F" =
r" − p" + q" − r"
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and	i = 1, 2, … , n	and		j = 1, 2, … ,m																			 

 
Step 5: After calculating the fuzzy synthetic value (Fi) for the ith object, the F values are compared.  
 
Consider two convex fuzzy numbers F0 = (p0, q0, r0) and F2 = (p2, q2, r2) as shown in Figure 2. The 
degree of possibility of F2 greater than F1 is defined as  
 
V F2 ≥ F0  = 1 if	p0 ≥ p2, q0 ≥ q2	and	r0 ≥ r2                                      (13) 
 
Or V F2 ≥ F0 = 	hgt F0 ∩ F2 = (p0 − r2)/ (q2 − r2) − (q0 − p0)          (14) 
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Figure 2. Two triangular Fuzzy numbers F1 and F2 (Cheng, 1999). 

The degree of possibility of a convex fuzzy number F greater 
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 where W is a nonfuzzy number   (18)

3.2. Calculation of MPi

MPi is calculated using Equation 1 by assigning the weights for 
each parameter that has been identified using the FAHP.

3.3. Steps of Cause and Effect Diagram 

The steps of the CED adapted from the literature (Ishikawa, 
1990; Sharma and Sharma, 2010; Papic et al., 2016) are shown 
below:

1. Select a multi-disciplinary Cross-Functional Team 
(CFT) or inter-departmental team 

2. Define the problem
3. Collect data implementing the ‘3W2H’ tool (what, 

when, where, how, how much) to categorize the character-
istics of the cause

4. Study every possible causal factor
5. Check all the consistent and reliable causes and 

eliminate all inconsistent causes, thus identifying the root 
cause(s)

4. Case Study

The study of the application of MPi for evaluation of the mining 
equipment productivity is carried out in an Indian open-pit mine 
operated in eastern India. The mine is operated for 24 hours 7 
days a week in 3 shifts of 8 hours each day. The poor performance 
of key mining machinery is the main problem of this mine in the 
production process resulting in low productivity The purpose of 
using MPi in the process is to identify the significant bottleneck 
and measure the effectiveness of the machine which is followed 
by root cause analysis of the bottleneck equipment. The produc-
tivity of the fleet of 3 mining equipment is being studied using 
MPi. The data collection for availability (total working duration, 
standby hours), performance, and utilization (idle time and down-
time time, etc.) of the shovel, truck, and dozer was performed for 
a period of 12 months from November 2015 to October 2016.The 
production performance is measured in terms of total output by 
each fleet of equipment operated in the mine and hence the output 
data are also collected. In this mine, the shovel fleet consists of 14 
shovels, a dozer fleet of 17 dozers and the trucks fleet consists of 
38 trucks with three different capacities. 



Sorokhaibam Khaba / Scientific Mining Journal, 2023, 62(2), 67-76

71

4.1. Data Collection and Development of the Hierarchy 

In this study, a structured interview was used to collect in-
formation and knowledge from the experts for developing the 
pairwise comparison matrices to determine the weights for MPi 
evaluation of mining machines. An interview questionnaire was 
designed for data collection and evaluation to ensure the content 
validity of the questionnaire. A total number of 11 experts, 8 from 
the mining sector (from the case study mine) and 3 from academic 
institutions with substantial experience were consulted and asked 
to respond to the importance of each factor on a scale of 1 to 9 
using an interview questionnaire followed by elicitation of experts 
and semi-structured interviews with a cross-functional team of 15 
employees from different departments of the mine and personal 
observations for the cause and effect analysis for a possible solu-
tion to the bottleneck.

4.1.1. Development of the Pairwise Comparison Matrix 

The first step of FAHP is to construct a pairwise comparison 
matrix with the data collected from 11 experts for the 3 factors us-
ing a comparison scale of 1-9. For each expert, a 3 x 3 non-negative 
pairwise comparison matrix is constructed. Thus, the importance 
levels were obtained for availability, performance, and utilization. 
Each pairwise comparison matrix is also checked for consistency. 
The pairwise comparison matrices are converted into fuzzy com-
parison matrices using the corresponding characteristic (mem-
bership) function using Table 2. 

4.1.2. Integration of the Fuzzy Comparison Matrices:

The fuzzy comparison matrices from 11 experts are incorpo-
rated into a final comparison matrix by the geometric mean pro-
cess which is shown in Equations (6), (7), and (8). For example, the 
aggregated fuzzy number F12 in the fuzzy comparison matrix for 
the dozer is represented as, (p12,q12,r12 ), where,

p"# = 4 ∗ 2 ∗ 1 ∗ 2 ∗ 4 ∗ 1 ∗ 4 ∗ 2 ∗ 2 ∗ 1 ∗ 1 "
"" = 1.88 

q"# = 5 ∗ 3 ∗ 2 ∗ 3 ∗ 5 ∗ 2 ∗ 5 ∗ 3 ∗ 3 ∗ 2 ∗ 2 "
"" = 2.98 

r"# = 6 ∗ 4 ∗ 3 ∗ 4 ∗ 6 ∗ 3 ∗ 6 ∗ 4 ∗ 4 ∗ 3 ∗ 3 "
"" = 4.02 

	
The aggregated fuzzy comparison matrices for the shovel, 

truck, and dozer are shown in Tables 2, 3, and 4, respectively.

Table 2. Aggregated fuzzy comparison matrices for shovel.

Availability Utilization Performance

Availability (1,1,1) (1.95,2.9,4.02) (1.29, 2.32,3.33)

Utilization (0.25,0.33,0.51) (1,1,1) (0.33,0.50,0.90)

Performance (0.30,0.43,0.78) (1.11, 2,3.03) (1,1,1)

Table 3. Aggregated fuzzy comparison matrices for truck.

Availability Utilization Performance

Availability (1,1,1) (2, 3.06,4.09) (1.2, 2.23,3.24)

Utilization (0.24,0.32,0.50) (1,1,1) (0.31,0.45,0.85)

Performance (0.31,0.45,0.83) (1.18, 2.21,3.23) (1,1,1)

Table 4. Aggregated fuzzy comparison matrices for dozer.

Availability Utilization Performance

Availability (1,1,1) (1.88,2.98,4.02) (1.07, 1.61, 2.66)

Utilization (0.24, 0.33,0.53) (1,1,1) (0.27, 0.37, 0.62)

Performance (0.4,0.62,0.94) (1.61,2.66,3.68) (1,1,1)

4.1.3. Defuzzification of the aggregated Fuzzy Comparison Matrix 

For the defuzzification of the aggregated fuzzy comparison 
matrix, the COA method is used. Using Equation (9), the aggregat-
ed fuzzy comparison matrix of the factors was defuzzified.Then 
the consistency ratio of the defuzzified integrated comparison ma-
trix is checked. 

4.1.4. Calculation of the Fuzzy Synthetic Value

The fuzzy synthetic value of assessment factors is calculated 
from the aggregated comparison matrix by using Equations (10) - 
(12). The fuzzy synthetic value of the dozer is shown below:
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𝐹𝐹' = 3.95, 5.59, 7.68 ⊗ 0.06, 0.09, 0.12 		
F1	=	(0.24,0.50,0.92)	
	
Similarly,	the	fuzzy	synthetic	value	of	the	remaining	factors	is	calculated	as	
F2	=	(0.09,0.15,0.26)	and	F3	=(0.18,0.39,0.68)	
	
4.1.5.	Comparison	of	the	Fuzzy	Synthetic	Value:	
The	fuzzy	synthetic	values	of	the	factors	are	compared	by	using	Equations	(13)	-	(16)		
The	degree	of	possibility	for	the	factors	
	
V F' ≥ F? and F' ≥ FC = 1		
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Similarly, the weights of the assessment factors for the shovel 
and truck are calculated. 

W’Shovel= (0.60, 0.05, 0.354)                                                            (19)

W’truck= (0.60, 0.04, 0.36)                                                                (20)

W’Dozer= (0.54, 0.03, 0.43)                                                                (21)

4.2. Calculation of MPi

The information for availability, utilization, and performance 
of the shovel, truck, and dozer at the mine for the period under 
study are presented in Figures 3-5. The average percentage of 
availability, utilization, and performance for shovel, truck, and 
dozer is taken for MPi calculation. The average percentage of the 

 
Figure 3. Availability of Shovel, Truck, and Dozer (November 2015- October 2016). 

 

Figure 4. Utilisation of Shovel, Truck, and Dozer (November 2015- October 2016). 
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Figure 5. Performance of Shovel, Truck, and Dozer (November 2015- October 2016). 
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factors for each machine along with the permissible norms of the 
Government of India for this mine, represented within the paren-
thesis, is shown in Table 5:

Table 5: Average percentage of availability, utilization, and performance of 
shovel, truck, and dozer.

Shovel Truck Dozer
Availability 74 (80) 56 (67) 35 (70)
Utilization 54 (58) 27 (50) 29 (45)
Performance 42 34 31
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Using the weights presented in Equations (19) - (21) the value 
of MPi for each machine is calculated using Equation (1) as fol-
lows: 

MPi Shovel = Av0.60 × Ut0.05× Pp0.34 = 740.60× 540.05× 420.34 = 57.55 %

MPi Truck = Av0.60 × Ut0.04× Pp0.36 = 560.60× 270.04× 340.36 = 45.45 %

MPi Dozer = Av0.54 × Ut0.03× Pp0.43 = 350.54× 290.03× 310.43 = 33.03 %

4.3. Root Cause Analysis

Root cause analysis is best accomplished by a multidisci-
plinary cross-functional team of experts in different sectors as it 
would provide complementary skills (Guerin, 2015). In the study, 
data collection is done through personal observations, consensus 
building, and semi-structured interviews with a cross-functional 
team of 15 employees from different departments such as mining 
(excavation), electrical and mechanical engineering, safety, and 
personnel at the worksite and area office of the mine. The mine 
visits help to examine the physical environment and the usual 
work processes through direct interaction with the staff which is 
followed by reviews of relevant documentation and literature for 
formulating recommendations and actions. The semi-structured 
interview follows a deductive query technique in which a series 
of “why” and “caused by” questions were asked 3 or more times 
to identify the potential causes and various sub-clauses/factors 
that contributed to the potential causes. The query discontinues 
when no more causes can be attributed to the effect, hence here, 
the root causes are deduced. CED is done with suggestions from 
the literature (Papic et al., 2016; Sharma and Sharma, 2010; Ishi-
kawa, 1990) which is adapted for the study. The ineffectiveness of 
the dozer is enumerated and visualized on the Ishikawa diagram 

 
Figure 6. Cause and Effect Diagram for Ineffectiveness of Dozer 

 
 
 
 

Figure 6. Cause and Effect Diagram for Ineffectiveness of Dozer

which is analyzed using the methodology proposed in Section 3. 
Hence, 5 root causes are identified based on 4 broad categories 
related to machine, material, manpower, and method as illustrated 
in Figure 6. 

5. Discussions

The study explores the application of MPi and CED to exam-
ine the productivity of the fleet of 3 mining types of equipment 
through bottleneck identification and RCA. The study reveals that 
the dozer fleet is the bottleneck equipment. The effectiveness 
of the dozers may be improved with an increase in their perfor-
mance. While the weight assessment suggests that utilization is 
the criteria that must be focused on strongly for improvement. 

The study demonstrates to development of significant insights 
into the root causes of the ineffectiveness of dozers by exploring 
various failure factors. The finding from the RCA reveals a signif-
icant proportion of the causes are related to machine, material, 
manpower, and method. Several maintenance-related measures 
are proposed in the root cause analysis. The scheduling and plan-
ning of the dozer need to be checked for performance and produc-
tivity improvement. Maintenance outsourcing of the entire fleet of 
a dozer or some maintenance functions is one of the mitigation 
measures for maintenance managers and operators for the effec-
tiveness of the dozer. Efficient maintenance can also be achieved 
by improved instructions on the maintenance of the dozer; contin-
uous monitoring of the maintenance procedures such as cleaning 
or lubrication and appraisal of the inspection gap; and periodic 
inspection like minor servicing and repair, re-setting the machine 
to acceptable performance level and assessment of the quality of 
lubricants used.
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There is a significant need for the validation of theoretical 
knowledge and techno-managerial skills in the mine. Some of the 
mitigation measures for manpower-related causes such as lack of 
skill, working instructions, individual training and characteristics, 
and job experience would be personnel re-training; categorizing 
tasks based on complexity and assigning difficult task for more ex-
perienced personnel; developing task usage, inspection manuals 
and check-lists of equipment; educating operators about the im-
portance of work standardization which helps in minimizing the 
consumption of resources; and augmenting employee motivation 
and commitment through participation in decision making. 

Thus, exploring the root causes of the ineffectiveness of the 
dozers is important as it will avail the practitioners/employees 
with the opportunity of choosing and execute the maintenance 
strategies more effectively, thereby maximizing the equipment 
performance and productivity.

6. Conclusions 

This study demonstrated a case analysis of a coal mine that 
can be applied for the productivity improvement of the Indian coal 
mining industry. In the study, the productivity of 3 mining equip-
ment is analyzed using MPi. The study found that the dozers are 
the production bottleneck machine for the period of case analysis 
based on their MPi value. Thus, the dozers have less effectiveness 
for production as compared to the shovels and trucks. The result 
is validated with the secondary data from the mining department 
and personal management of the mine. The study reveals that not 
only productivity improvement but lean mining could be achieved 
by eliminating or reducing the inconsistency between the pro-
duced output and the desired output after bottleneck analysis. The 
improvement solutions and the mitigating measures are suggest-
ed based on the detected bottleneck and dominant factor through 
MPi comparison and evaluation using RCA. A CED was performed 
to eliminate the effect of bottleneck equipment. In this study, it has 
been observed that MPi and RCA can be implemented to improve 
the productivity of the equipment. The study identifies the root 
and contributory factors of the ineffectiveness of the dozer in the 
mine and suggests risk reduction strategies and the development 
of action plans to assess the effectiveness of the strategies.

The highly dynamic nature of the mining environment may 
constrain the evaluation of the process effectiveness using MPi 
thereby affecting the decision-making. The conclusion from the 
study is based on personal judgments of the experts and employ-
ees for the case mine which may limit the study to ensure external 
validity. 

In RCA, the derived causal relations may not eMPirically link 
to the effect under examination owing to its predominantly expert 
dependence. Thus, semi-quantitative techniques such as Failure 
Mode and Effect Analysis (FMEA) can be employed in future stud-
ies. Moreover, the findings can be externally validated with multi-
ple cases through real-world implementation or simulation.

References

Aboumrad, M., Shiner, B., Riblet, N., Mills, P.D., Watts, B.V. 2018. Factors 
contributing to cancer-related suicide: A study of root-cause analysis 
reports. Psycho-Oncology. 27 (9), 2237-2244.

Ahmed, M., Ahmad, N. 2011. An application of Pareto analysis and cause-
and-effect diagram (CED) for minimizing rejection of raw materials in 
the lamp production process. Management Science and Engineering 
5( 3), 87.

Andersen, B., Fagerhaug, T. 2006. Root cause analysis: simplified tools and 
techniques, ASQ Quality Press.

Arputharaj, M. M. 2015. Studies on availability and utilization of mining 
equipment-an overview. International Journal of Advanced Research 
in Engineering and Technology. 6 (3), 14-21.

Ayag Z., Gurcan Ozdemir, R. 2012. Evaluating machine tool alternatives 
through modified TOPSIS and alpha-cut based fuzzy ANP. Internation-
al Journal of Production Economics. 140(2), 630-636. 

Belhadi, A., Touriki, F.E., Fezazi, S.E. 2017. Prioritizing the solutions 
of lean implementation in SMEs to overcome its barriers: An inte-
grated fuzzy AHP-TOPSIS approach. Journal of Manufacturing Tech-
nology Management. 28 (8), 1115-1139.

Beikkhakhian, Y., Javanmardi, M., Karbasian, M., Khayambashi, B. 2015. The 
application of ISM model in evaluating agile supplier’s selection cri-
teria and ranking suppliers using fuzzy TOPSIS-AHP methods. Expert 
Systems with Applications. 42 (15), 6224-6236.

Buckley, J.J., Qu, Y.1990. On using alpha-cuts to evaluate fuzzy functions. 
Fuzzy Sets System, 38, 309–312.

Chang, D.Y.1996. Applications of the extent analysis method on fuzzy AHP. 
European Journal of operational research. 95 (3), 649-655.

Cheng, C. H.1999. Evaluating weapon systems using ranking fuzzy num-
bers. Fuzzy Sets and Systems.107(1), 25–35.

Duggett, A. M. 2004. A Statistical Comparison of Three Root Cause Tools. 
Journal of Industrial Technology. 20 (2),1-9.

Elevli, S., Elevli, B. 2010. Performance measurement of mining equipment 
by utilizing OEE. Acta Montanistica Slovaca. 15(2), 95-101.

Farhan, U.H., Tolouei-Rad, M., Osseiran, A. 2016. Use of AHP in deci-
sion-making for machine tool configurations. Journal of Manufac-
turing Technology Management. 27(6), 874-888.

Guerin, T. 2015. An investigation into the cause of loss of containment 
from the supply of mini-bulk lubricants. Engineering Failure Analysis. 
54,1–12.

Huang, Y.P., Basanta, H., Kuo, H.C., Huang, A. 2018. Health symptom check-
ing system for elderly people using fuzzy analytic hierarchy process. 
Applied System Innovation,1 (2),10.

Ishikawa, K. 1990. Introduction to quality control, Productivity Press.

Kang, H.Y., Lee, A.H.I., Yang, C.Y. 2012. A fuzzy ANP model for supplier selec-
tion as applied to IC packaging. Journal of Intelligent Manufacturing, 
23 (5),1477-1488.

Kamaruzzaman, S.N., Lou, E.C.W., Wong, P.F., Wood, R., Che-Ani, A.I. 2018. 
Developing weighting system for refurbishment building assessment 
scheme in Malaysia through analytic hierarchy process (AHP) ap-
proach. Energy Policy. 112, 280-290.

Kellogg, K.M., Hettinger, Z., Shah, M., Wears, R.L., Sellers, C.R., Squires, M. 
and Fairbanks, R.J. 2017. Our current approach to root cause analysis: 
is it contributing to our failure to improve patient safety. BMJ Quality 
Safety. 26 (5), 381-387.

Kesimal, A., Bascetin A. 2002. Application of Fuzzy Multiple Attribute De-
cision Making in Mining Operations. Mineral Resources Engineering. 
11(1), 59-72.

Khaba, S., Bhar, C. 2017. Quantifying SWOT analysis for the Indian coal min-
ing industry using Fuzzy DEMATEL. Benchmarking: An International 
Journal.24(4), 882-902.

Kim, J., Lee, J., Kim, B., Kim, J. 2019. Raw material criticality assessment 
with weighted indicators: An application of fuzzy analytic hierarchy 
process. Resources Policy. 60, 225-233.

Kutlu, A.C., Ekmekçioğlu, M. 2012. Fuzzy failure modes and effects analysis 
by using fuzzy TOPSIS-based fuzzy AHP. Expert Systems with Applica-
tions, 39 (1), 61-67.

Lanke, A. A., Hoseinie, S. H., Ghodrati, B. 2016. Mine production index 
(MPi)-extension of OEE for bottleneck detection in mining. Interna-
tional Journal of Mining Science and Technology. 26 (5),753-760.

https://www.emeraldinsight.com/author/Belhadi%2C+Amine
https://www.emeraldinsight.com/author/Touriki%2C+Fatima+Ezahra
https://www.emeraldinsight.com/author/el+Fezazi%2C+Said
https://www.emeraldinsight.com/author/Farhan%2C+Uday+Hameed
https://www.emeraldinsight.com/author/Tolouei-Rad%2C+Majid
https://www.emeraldinsight.com/author/Osseiran%2C+Adam


Sorokhaibam Khaba / Scientific Mining Journal, 2023, 62(2), 67-76

75

Lanke, A., Hoseinie, H., Ghodrati, B. 2014. Mine production index (MPi): 
new method to evaluate the effectiveness of mining machinery. In In-
ternational conference on mining and mineral engineering (ICMME 
2014),755-759.

Lee, A., Lin, C.Y., Wang, S. R., Tu, Y. M. 2010. The construction of a compre-
hensive model for production strategy evaluation. Fuzzy Optimization 
and Decision Making, 9(2),187–217. 

Lee, T. R, Thi P. H. L., Andrea G., Lenny S. C. K. 2011. Using FAHP to deter-
mine the criteria for partner’s selection within a green supply chain: 
The case of hand tool industry in Taiwan. Journal of Manufacturing 
Technology Management, 23 (1), 25-55.

Lundberg, A., Dangel, R.F. 2019. Using root cause analysis and occupation-
al safety research to prevent child sexual abuse in schools. Journal of 
child sexual Abuse, 28(2,),187-199.

Mowafi, Y.A., Alaqarbeh, T., Alazrai, R. 2019. Putting Context in the Network 
Access of Mobile Applications Using Fuzzy Analytic Hierarchy Pro-
cess. International Journal of Decision Support System Technology. 11 
(2),13-26.

Nazari, S., Fallah, M., Kazemipoor, H., Salehipour, A. 2018. A fuzzy infer-
ence-fuzzy analytic hierarchy process-based clinical decision support 
system for diagnosis of heart diseases. Expert Systems with Applica-
tions. 95, 261-271.

Papic, L., Kovacevic, S., Galar, D., Thaduri, A. 2016. Investigation of Causes of 
Mining Machines Maintenance Problems, Current Trends in Reliability, 
Availability, Maintainability and Safety. 283–299, Springer.

Prakash, C., Barua, M. K., Pandya, K. V. 2015. Barriers analysis for reverse 
logistics implementation in Indian electronics industry using fuzzy an-

alytic hierarchy process. Procedia-Social and Behavioral Sciences.189, 
91-102. 

Pendred, S., Fischer, A., Fischer, S. 2016. Improved management effective-
ness of a marine protected area through prioritizing performance in-
dicators. Coastal Management. 44 (2), 93-115.

Reid, I., Smyth-Renshaw, J. 2012. Exploring the fundamentals of root cause 
analysis: are we asking the right questions in defining the problem. 
Quality and Reliability Engineering International. 28 (5), 535–545.

Saaty. T. L.1980. The Analytic Hierarchy Process. New York: McGraw Hill.

Sharma, R. K., Sharma, P. 2010. System failure behavior and maintenance 
decision-making using, RCA, FMEA, and FM. Journal of Quality in Main-
tenance Engineering.16, 64–88. 

Shaw, K., Shankar, R., Yadav, S. S., Thakur, L. S. 2012. Supplier selection us-
ing fuzzy AHP and fuzzy multi-objective linear programming for devel-
oping a low-carbon supply chain. Expert systems with applications. 39 
(9), 8182-8192. 

Wilson, P. F., Dell, L. D., Anderson, G. F.1993. Root Cause Analysis: A Tool for 
Total Quality Management. ASQC Quality Press.

Yu, M.C., Goh, M., Lin, H. C. 2012. Fuzzy multi-objective vendor selection 
under lean procurement. European Journal of Operational Research, 
219 (2), 305–311.

Zadeh, L. A.1965. Fuzzy sets. Information and Control, 8(3), 338-353.

Zyoud, S.H., Kaufmann, L.G., Shaheen, H., Samhan, S., Fuchs-Hanusch, D. 
2016. A framework for water loss management in developing coun-
tries under fuzzy environment: Integration of Fuzzy AHP with Fuzzy 
TOPSIS. Expert Systems with Applications.61, 86-105.



76



77

Scientific Mining Journal, 2023, 62(2), 77-84

Original Research

**** Corresponding author: xiaogenchen012@126.com • https://orcid.org/0000-0001-6714-1631
*  jild0961@163.com • https://orcid.org/0000-0002-9277-6206
** zhouling830@126.com  • https://orcid.org/0000-0003-0754-9226
*** liujiangtao012@sina.com  • https://orcid.org/0000-0002-1812-2685

A B S  T R A C T

a School of Mining Engineering, University of Science and Technology Liaoning, Anshan 114051, China
b School of Energy and Mining, China University of Mining and Technology (Beijing), Beijing 100083, China
c  Anshan Iron and Steel Group Corporation, Anshan 114001, China

In order to improve the utilization efficiency of salt rock mines when storing natural gas, it is necessary to clarify the influence of different factors 
on adjacent underground laminated salt rock caverns. In view of this, 15 groups of simulation tests are designed by using the Response Surface 
Methodology (RSM). A quadratic response surface model with the midpoint displacement and cavern waist stress of the interlayer as the response 
values is constructed. The influence of the interaction between pillar width, interlayer thickness and the location of a single interlayer on the mid-
point displacement of the interlayer and the internal waist stress of the adjacent ellipsoidal cavity is studied. The results show that the interlayer 
thickness is the main influence factor of the midpoint displacement of the interlayer, and the pillar width is the main influence factor of the cavern 
waist stress. When the adjacent storage is designed as a pillar width of 2.5D, an interlayer thickness of 2 m, and the midpoint of the interlayer is 
0.3H above the cavity, the displacement and stress of the test model are relatively small. The results can provide a certain reference for the mechan-
ical analysis of adjacent underground layered salt rock gas storage.
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Introduction

Salt rock is an ideal oil and gas storage medium for oil and gas 
storage due to its low permeability and optimal creep property 
(Liu et al., 2016; Wanyan et al., 2019; Bakhtiari et al., 2021). Com-
pared with the aboveground storage methods, salt rock storage 
has the advantages of flexible injection and production, large sin-
gle-well throughput, and a high proportion of working gas (Yang, 
2017; Liu et al., 2018). In addition, underground salt rock also has 
the characteristics of safety, saving land resources, capital and en-
vironmental protection, which is an effective way to ensure ener-
gy security (Zivar et al., 2021; Liu et al., 2020; Shad et al., 2022). 
The history of underground gas storage in salt rock in some coun-
tries is earlier, and the designed operation life of gas storage has 
been up to 80 or even hundreds of years (Patroni, 2007). China’s 
natural gas business is developing rapidly, but the lack of gas stor-
age capacity is still a bottleneck restricting its sustainable and 
high-quality development. To solve this problem, a master plan 
has been set to speed up the construction of underground stor-

age facilities. It will take five years to complete the total new peak 
capacity in the first 20 years (National Energy Administration, 
2022). It is estimated that the future natural gas production will 
continue to grow for a long time (Lu et al., 2018). Increasing the 
construction of gas storage is of great significance for easing the 
tension between gas supply and demand in China and promoting 
the rapid development of economy.

To study the stability in underground salt rock storages, a ge-
omechanical model test of Jintan underground salt rock storages 
was carried out to obtain the creep deformation and stress dis-
tribution of surrounding rock during the operation of gas storage 
(Dai et al., 2009). Jing et al. (2012) summarized the 7 factors that 
may affect the shrinkage deformation of salt rock storage. They 
presented that the operation mode of two adjacent gas storage 
caves (adjacent caverns or adjacent cavities for short), the ratio of 
low-pressure operation time in a single cycle, and the ratio of cav-
ity height to the diameter are the main sensitive factors. Jia et al. 
(2014) studied the influence of geometric distribution form of el-
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lipsoidal cavity, pillar width and interlayer position on the stability 
of gas cavern by orthogonal experiments. Since it was proved that 
the interlayer position was the most significant influencing factor, 
the interaction between different factors and parameters cannot 
be effectively reflected.

Taking the underground salt rock storage in Jintan, China as 
the test background, reasonable test factors are selected by refer-
ring to the test parameter settings in some articles and engineer-
ing practices. 15 test plans are established by the response surface 
method, and the test data are obtained by establishing correspond-
ing test models with the professional finite element simulation 
software. The effects of the pillar width, interlayer thickness and 
interlayer position on adjacent gas storage chambers are studied. 
Through the main effect analysis and response surface analysis of 
the test results, the significance and optimum level of each factor 
are obtained, and the optimum form of adjacent caverns during 
the construction of salt rock storage groups is established.

1. Parameter design of adjacent storage

The Jintan salt rock layer in Jiangsu Province is located about 
1000 m deep underground with a thickness of 67.85 m to 230.95 
m. The interlayer of salt rock has two layers with an average thick-
ness of 3.02 m and 2.50 m. As of March 2023, 99 underground cav-
erns of salt rock have been built or under construction in this salt 
mining area, with a single salt cavern volume of about 200,000-
300,000 m3, a cavern diameter of about 70 m, a height of about 
150 m, and a design pressure of about 17 MPa (Jiangsu provincial 
department of natural resources, 2021). The rock physical and 
mechanical parameters of the salt mine area are shown in Table 1 
(Zhang et al., 2009). The test will use the above parameters as the 
basis for the gradient design of the experimental data.

Table 1: Basic parameters of strata

Formation
Elasticity 
modulus 
/GPa

Poisson 
ratio

Densty 
/(kg/
m3)

Cohesion 
/MPa

Internal 
friction 
angle

/ (°)
Mudstone 10 0.27 2350 1.0 35
Interlayer 4 0.30 2350 0.5 30
Salt rock 18 0.30 2200 1.0 45

This test mainly studies the influence of different factors on the 
displacement and stress of sensitive parts of adjacent chambers. 
When simulating the initial stress of rock mass, only the gravity of 
rock layer is considered in the test, and Drucker-Prager model is 
used for numerical calculation. When simulating the initial stress 
of rock mass, only the static analysis of rock mass gravity is con-
sidered and the Drucker-Prager model is selected for numerical 
calculation. To study the influence of different factors on the stress 
and displacement at sensitive positions of adjacent cavities, 15 
groups of corresponding three-dimensional numerical models are 
established to simulate the stress and displacement of adjacent 
cavities using the professional finite element simulation software 
after determining the research scheme. The calculation area is set 
as a cube of 800 m *800 m *400 m, and the weight of the overlying 
strata 700 m above the cube is simplified to the load on the top 
surface of the model. Based on the thickness of overburden rock 
and the average density of mudstone, the equivalent load above 
the cube is about 16 MPa. Four vertical surfaces are constrained by 
normal directions perpendicular to the surface. According to the 
actual situation of the project, the long axis of the storage cham-

ber is 150 m and its short axis is 70 m. For different test schemes, 
pillar width, interlayer thickness and interlayer position will vary. 
Figure 1 shows the cross section of the storage model with a pillar 
width of 105 m, an interlayer thickness of 3 m, and the interlayer 
midpoint is 75 m below the top of the cavern.

Figure 1. Cross section of the adjacent gas storage model

1.1 Design of pillar width

The overall stability of the gas storage group is closely relat-
ed to the pillar width. Too narrow pillars may lead to instability 
and destruction of the gas storage chamber, and too wide pillars 
may reduce the utilization rate of salt rock mines. To prevent the 
destruction of gas cavern and improve the utilization efficiency of 
salt rock mines, a reasonable pillar width is necessary. Through 
the simulation of the rheology geology of the storage group with 
similar materials from a salt rock reservoir media model, Zhang 
et al. (2012) concluded that the pillar width should be greater 
than 1.5 times the maximum diameter of the chamber. Wang et 
al. (2011) used FLAC3D to establish a finite element calculation 
model for the simulation of saltrock gas caves. It is suggested that 
the width of pillars between two adjacent salt rock caves should 
be 2-3 times the diameter of salt cavern. Liu et al. (2011) and Jia et 
al. (2014) obtained an optimum pillar width2 times the diameter 
of salt cave by different experimental design methods. Taking into 
account the above results, and to avoid waste of salt area caused 
by too wide pillars, the pillar width is designed to be 105 m, 140 m 
and 175 m, i.e. 1.5D (diameter), 2.0D and 2.5D respectively. D is the 
maximum diameter of the cavity waist, and 1D=70 m, as shown in 
Figure 2.

Figure 2. Design of pillar width
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Table 2. Scheme design of response surface of the test factor

Test 
number

Code 
value

Pillar 
width(A)/m

Interlayer 
thicness 
(B)/m

Interlayer 
postion 
(C)/m

1 A1B2C3 105 3 105

2 A1B1C2 105 2 75

3 A2B2C2 140 3 75

4 A3B3C2 175 4 75

5 A1B3C2 105 4 75

6 A2B3C3 140 4 105

7 A2B3C1 140 4 45

8 A2B2C2 140 3 75

9 A3B1C2 175 2 75

10 A3B2C3 175 3 105

11 A2B1C3 140 2 105

12 A2B2C2 140 3 75

13 A1B2C1 105 3 45

14 A3B2C1 175 3 45

15 A2B1C1 140 2 45

2.2  Test results and model analysis

According to the experimental scheme designed in Table 2, the 
corresponding finite element numerical simulation model is estab-
lished, and the stress and deformation displacement of different 
parts of adjacent caverns are obtained when the model is loaded. 
As shown in Table 3, the result data of 15 groups of experiments de-
signed by BBD and the corresponding models includes the horizon-
tal displacement of the cavern waistand the midpoint  of pillar inter-
layer (denoted as S and T), the equivalent stress at the midpoint of 
the cavern waist and the pillar interlayer (denoted as V and W), and 
the equivalent stress at the midpoint of the pillar and the interlayer 
(denoted as Y and Z). The response surface calculation function in 
the data analysis software is used to analyze the response surface 
of 6 groups of data in Table 3, and the fitting degree of different 
models in Table 4 is summarized. The fitting distance is measured 
in response variables, which represents the distance between the 
data value and the fitted value. The lower the fitting distance val-
ue, the higher the degree ofresponse describled by the model.The 
higher the R-sq (R2) value, the higher the fitting degree between the 
the model andthe data. R-sq is always between 0% and 100%. R-sq 
(forecast) can be used to determine the degree to which the model 
can predict the response to new observations, and the model with 
larger R-sq (forecast) values also has better prediction.

In the correlation coefficient of the response surface function 
fitting of the model, the prediction R-sq by the response surface 
regression model for the midpoint displacement of the interlayer, 
the cavern waist stress, and the pillar central stress is more than 
90%. It shows that the predicted data of the response surface mod-
el function is consistent with the actual data, and the error is small. 
It can be used to analyze and predict the effect of parameters set 
in the test on the adjacent caverns. Through the response results 
of pillar central stress, it is strongly influenced by the pillar width 
and can be classified as linear correlation, and is not the focus of 
this test. The prediction R-sq of the response surface regression 
model of other parameters cannot reach 90%, and no further anal-
ysis will be made.

1.2 Design of interlayer thickness

The existence of an interlayer in a layered salt rock has an im-
portant impact on the stability of surrounding rock. Many stud-
ies show that the interlayer is usually a part of layered salt rocks 
prone to deformation (National Energy Administration, 2022; Lu 
et al., 2018). According to a creep fatigue-failure model of salt 
rock, Moghadam et al. (2015) found that the stability of caverns 
was significantly affected when the cavern surface contacted the 
interlayer. According to an average thickness of interlayers in a 
salt rock (Jiangsu provincial department of natural resources, 
2021), the interlayer thickness is set as 2 m, 3 m and 4 m respec-
tively.

1.3 Design of cavity interlayer position

According to Lu et al. (2018), the interlayer position has lit-
tle influence on the stability of storage group. Jia et al. (2014) be-
lieved that there was a gap in the stress level due to different posi-
tions of the interlayer relative to the cavity. The stress level of the 
interlayer controls the stability of the interlayer, and then affects 
the stability of the cavity. It is believed that the interlayer position 
has a great impact on the stability of caverns. According to the re-
sults of Jia et al. (2014) and Zhang et al. (2022), the positions of the 
test interlayer are set as 45 m, 75 m and 105 m, i.e. 0.3H (height), 
0.5H and 0.7H respectively. H is the maximum height of the cavity, 
indicating the distance between the midpoint of the interlayer and 
the top of the cavity in the vertical direction, and 1H=150 m, as 
shown in Figure 3.

Figure 3. Design of interlayer position

2. Response surface test

2.1 Design of test scheme

Response Surface Methodology (RSM) is a statistics-based 
optimization method that combines the experimental design and 
mathematical model. It can be used to explore the mathematical 
relationship between multiple influencing factors and response 
output (Zhou et al., 2021). In this study, RSM is used to explore 
the influence of pillar width, interlayer thickness, interlayer po-
sition, and their interaction on the stability of adjacent cavities 
in the design of adjacent storages of layered salt rocks.The op-
timal design effect was obtained through different design tests 
(Chen et al., 2017). Box-Behnken Design (BBD) method was used 
to design the 3-factor experiment, as shown in Table 2. The code 
values are randomly generated by the professional data analysis 
software.
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Table 3. Regression test results of different response values

Test 
number

S/mm T/mm V/MPa W/MPa Y/MPa Z/MPa

1 14.36 14.57 29.83 25.34 21.49 19.97
2 14.72 15.54 30.00 26.24 21.45 20.82
3 15.39 16.82 29.17 25.15 19.02 18.71
4 15.60 17.79 28.93 24.59 17.53 17.39
5 15.54 17.85 30.34 25.77 21.49 20.89
6 15.04 15.84 29.03 24.51 19.10 18.29
7 15.10 15.98 29.01 24.47 19.15 18.32

8 15.39 16.82 29.17 25.15 19.02 18.71
9 15.12 15.82 28.73 25.06 17.48 17.32
10 15.14 15.02 28.35 24.49 17.59 17.12
11 14.76 13.93 28.56 25.18 19.03 18.23
12 15.39 16.82 29.17 25.15 19.02 18.71
13 14.37 14.67 29.84 25.32 21.49 20.00
14 15.13 15.18 28.31 24.43 17.59 17.14
15 14.75 14.06 28.57 25.14 19.03 18.24

Table 4. Fitting degree of test models with different response values

Model 
summary

Fitting 
distance

R-sq R-sq(ad-
justment)

R-sq(forecast)

S and ABC 0.2011109 90.52% 73.45% 0.00%
T and ABC 0.136949 99.57% 98.79% 93.08%
V and ABC 0.0784538 99.43% 98.39% 90.82%
W and 
ABC

0.116662 98.15% 94.82% 70.42%

Y and ABC 0.0271109 99.99% 99.97% 99.81%
Z and ABC 0.203973 99.05% 97.37% 84.78%

Multivariate nonlinear quadratic fitting is performed on the in-
terlayer midpoint displacement (T) and cavern waist stress (V) in 
Table 3, and the regression equations expressed in uncoded units 
areas (1) and (2):
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F-value and P-value are used to analyze the significance of each 
coefficient in the above equation. The results are shown in Table 5 
and Table 6. F-value analysis is also called F-test or ANOVA (analy-
sis of variance), which is used to evaluate the differences between 
groups. F-value represents the significance of the whole fitting 
equation. The larger the F-value, the more significant the equation 
and the better the fitting degree. P-value is a parameter used to 
determine the results of hypothesis test, which reflects the regres-
sion effect of parameters. The smaller the P-value, and the more 

significant the results (Zhou et al., 2021). In addition, whether the 
test result is “insignificant”, “significant” or “highly significant” 
needs to be determined by the P-value and the actual problems. 
In this experiment, P≥0.05 means that the regression effect of this 
factor is not significant; 0.001≤P<0.05 means that the regression 
effect of this factor is generally significant, and P <0.001 means 
that the regression effect of this factor is highly significant.

Table 5. Response surface regression model of interlayer midpoint displace-
ment

Source DoF Adj-SS Adj-MS F-value P-value Significant

Model 9 21.5935 2.3993 127.93 <0.001 Highly  
significant

A 1 0.174 0.174 9.28 0.029 Significant

B 1 8.2215 8.2215 438.36 <0.001 Highly  
significant

C 1 0.0351 0.0351 1.87 0.23 Insignificant
AA 1 0.0244 0.0244 1.3 0.306 Insignificant
BB 1 0.0005 0.0005 0.02 0.881 Insignificant

CC 1 13.0327 13.0327 694.89 <0.001 Highly  
significant

AB 1 0.0289 0.0289 1.54 0.27 Insignificant
AC 1 0.0009 0.0009 0.05 0.835 Insignificant
BC 1 0 0 0 0.972 Insignificant
Error 5 0.0938 0.0188
Loss 3 0.0938 0.0313
Pure 
error 2 0 0

Total 14 21.6873

Table 6. Response surface regression model of cavern waist stress

Source DoF Adj-SS Adj-MS F-value P-value Significant

Model 9 5.33258 0.59251 96.26 <0.001 Highly  
significant

A 1 4.04701 4.04701 657.52 <0.001 Highly  
significant

B 1 0.26281 0.26281 42.7 0.001 Significant

C 1 0.0002 0.0002 0.03 0.864 Insignificant

AA 1 0.35483 0.35483 57.65 0.001 Significant

BB 1 0.00148 0.00148 0.24 0.645 Insignificant

CC 1 0.58341 0.58341 94.79 <0.001 Highly  
significant

AB 1 0.0049 0.0049 0.8 0.413 Insignificant

AC 1 0.00063 0.00063 0.1 0.763 Insignificant

BC 1 0.00023 0.00023 0.04 0.856 Insignificant

Error 5 0.03078 0.00616

Loss 3 0.03078 0.01026

Pure 
error 2 0 0

Total 14 5.36336
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According to Table 5 and Table 6, the P-value of the interlay-
er midpoint displacement and the cavern waist stress response 
surface model are both less than 0.001, indicating that these two 
models are highly significant in fitting. In this model, the P-value 
of pillar width and interlayer thickness are both less than 0.05, 
indicating that they have significant effects on the midpoint dis-
placement of the interlayer. The interlayer thickness has a highly 
significant effect on the midpoint displacement of interlayer, and 
the pillar width has a highly significant effect on the cavern waist 
stress.

2.3  Factor effect and response surface analysis

Based on the response surface prediction equation, the factor 
response diagram and response surface of the interaction between 
the midpoint displacement and cavern waist stress of the interlay-
er and the three influencing factors of the pillar width, interlayer 
thickness and interlayer position are shown in Figs. 4-7. The rela-
tionship between each factor and the response value can be seen 
intuitively in the factor response graph. In the response surface 
graph, the influence of the factor on the response value is reflected 
in the slope of the response surface. If the slope is steep, the influ-
ence of the factor is great;otherwise, it is small.

(a) Main effect diagram of interlayer midpoint displacement

(b) Interaction diagram of interlayer midpoint displacement

Figure 4. Factor response of interlayer midpoint displacement

(a) Effect of A*B 

(b) Effect of A*C   

(c) Effect of B*C
Figure 5. Response surface of interlayer midpoint displacement

(a) Main effect diagram of cavern waist stress  

 (b) Interaction diagram of cavern waist stress
Figure 6. Factor response of cavern waist stress
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(a) Effect of A*B  

(b) Effect of A*C       

(c) Effect of B*C
Figure 7. Response surface of cavern waist stress

It can be seen from Figure 4 and Figure 5 that the interlayer 
midpoint displacement increases slightly with the increase of the 
pillar width set in the test. Combined with the P-value of the inter-
layer thickness in Table 5, the displacement is mainly affected by 
the interlayer thickness and increases as it increases. When the in-
terlayer is located at the waist of the cavity, the interlayer midpoint 
displacement is the largest and grows significantly with the increase 
of pillar width and interlayer thickness. It can be seen from Figure 5 
(a) that the response surface is relatively steep. A and B have obvi-
ous interaction, and the displacement is more affected by the pillar 
width than the interlayer thickness. The optimal result is 105 m pil-
lar width and 2 m interlayer thickness. It can be seen from Figure 5 
(b) that the displacement first increases and then decreases as the 
interlayer depth increases, and the optimal result response is 105 
m below the storage top. In Figure 5 (c), although the slope of the 
response surface is gentle, the range of displacement values is the 
largest. When the interlayer is located at the waist of the cavity, the 
displacement increases with the increase of the interlayer thickness.

It can be seen from Figure 6 and Figure 7 that the cavern waist 
stress decreases significantly with the increase of the pillar width 
set in the test. Based on the P-value of the pillar width in Table 6, 
the stress is mainly affected by the pillar width and increases with 
the decrease of the pillar width. When the interlayer is located at 
the waist of the cavity, the stress in the cavern waist is the largest 
and grows significantly with the increase of the interlayer thick-
ness. It can be seen from Figure 7 (a) that the response surface is 
relatively steep, A and B have obvious interaction, and the stress is 
less affected by the interlayer thickness than the pillar width. The 
optimal results are 175 m pillar width and 2 m interlayer thick-
ness. It can be seen from Figure 7 (b) that the stress first increases 
and then decreases with the increase of the interlayer depth, and 
the optimal result response is 45 m below the top of the storage. It 
can be seen from Figure 7 (c) that when the interlayer is located at 
the waist of the cavity, the stress increases with the increase of the 
interlayer thickness.

To determine the optimal form of adjacent caverns, 6 respons-
es are required at least to obtain the optimal solution. In the data 
analysis software, the weights of 6 groups of response models are 
set to 1 for response, and the response results of multiple models 
are obtained as shown in Table 7. The optimal solution of the pil-
lar width, interlayer thickness, and interlayer location is 175 m, 2 
m and 45 m, respectively. As shown in Figure 8, a finite element 
model is built by the optimal solution, and the displacement and 
stress data at each location are obtained. The values of S, T, V, W, Y 
and Z are 14.92, 14.24, 28.13, 24.6, 17.54 and 17.10, respectively. 
Comparing the data with the fitted values and confidence intervals 
of the corresponding models in Table 7, it can be seen that the op-
timal solution model values are located in 95% confidence inter-
vals and 95% prediction intervals. This shows that the predicted 
results of the multi-model response are consistent with the data 
obtained from the finite element model, and the error is small. To 
this end, the optimal solution model can be used to analyze and 
predict the influence of pillar width, interlayer thickness and in-
terlayer position on the corresponding displacement and stress of 
adjacent caverns in Jintan.

Figure 8. Finite element model of the optimal solution for each part

Table 7. Multiple model response results

Response Aim Lower limit Upper limit Fitting value SD of fitting value Confidence interval 95% Forecast interval 95%
S and ABC Min 14.36 15.6 14.836 0.238 (14.225, 15.447) (14.036, 15.636)
T and ABC Min 13.93 17.85 14.169 0.162 (13.753, 14.585) (13.624, 14.714)
V and ABC Min 28.31 30.34 28.235 0.0927 (27.9967, 28.4733) (27.9228, 28.5472)
W and ABC Min 24.43 26.24 24.735 0.138 (24.381, 25.089) (24.271, 25.199)
Y and ABC Min 17.48 21.49 17.5325 0.032 (17.4502, 17.6148) (17.4246, 17.6404)
Z and ABC Min 17.12 20.89 16.991 0.241 (16.372, 17.611) (16.180, 17.803)
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3. Conclusion

15 groups of simulation tests are designed using the 
Box-Behnken method of response surface mdoel..The response 
surface model is established with the displacement of interlayer 
midpoint and the stress of the cavern waist as the response val-
ues.The thickness of the interlayer is the most significant factor 
of interlayer midpoint displacement, and the position of the inter-
layer follows the second. Pillar width is the most significant factor 
affecting the cavern waist stress, andthe interlayer thickness and 
interlayer position are the subsignificant factors.According to the 
parameters set in the test, the optimal form of the adjacent stor-
age is a pillar width of 2.5D, an interlayer thickness of 2 m, and 
the midpoint of the interlayer is 0.3H above the cavity. Considering 
the stability and economy of the salt rock underground reservoir 
group, the column width can also be designed according to 2D.

The above static analysis conclusion can provide a model basis 
for the idle state of adjacent underground salt rock storage. For 
other projects with similar geological conditions, the proposed 
method can be used for modeling analysis and optimization in en-
gineering practices.
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To solve the problem of floor water inrush in the process of coal mining on a confined aquifer and study the law of floor instability, a cemented fill-
ing mining method is proposed in the paper. Using river sand and cement as filling materials, the cementitious material with a concentration of 75% 
and cement content of 15% has the best flow and mechanical properties. Based on the elastic half-space theory and the bearing characteristics of 
the backfill, the mechanical model of floor stability is established, the critical criterion of floor instability is proposed, and the relationship between 
the failure depth of the floor and the location and pressure of the confined aquifer is obtained. The numerical simulation test scheme is designed, 
and the FLAC3D fluid-structure coupling element is used to explore the instability characteristics of the floor in the mining process. The research 
results show that the failure depth of the floor will gradually decrease with the increase of the strength of filling materials, the increase of aquifer 
distance, and the decrease of water pressure. The research results provide a useful reference for the study of the safe mining of coal resources in 
a confined aquifer.
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Introduction

According to the State Statistics Bureau, China’s total energy 
consumption in 2021 was 4.49×109 t of standard coal, of which 
coal consumption accounts for 60.4% of the total energy con-
sumption (Shen and Wang, 2023). Under such a large mining in-
tensity, most mines have entered the deep level. Especially in the 
northern mines, they are seriously affected by the extremely thick 
Ordovician limestone aquifer at the bottom and are very prone 
to water inrush disasters. According to statistics, from 2015 to 
2020, 133 water inrush disasters occurred on the coal seam floor 
of the northern mine (Yu et al., 2021). At present, China mainly 
uses drainage and depressurization method, curtain grouting 
methods, short-face mining methods, strip mining methods, dou-
ble-face mining methods, segmented retreating mining methods, 
and filling mining methods to solve the water inrush of coal seam 
on confined water layer (Han et al. 2021; Sillitoe and Brogi, 2021; 
Yin et al., 2021). Among them, the drainage and depressurization 
method can’t reduce the Ordovician limestone water with strong 
water abundance and sufficient supply; The production capacity 
of short face mining method is low, and the recovery rate of strip 
mining is low; The layout of the production system of the dou-

ble face mining is complex; The preparation time of segmented 
retreating mining method is long; Filling mining method can not 
only reduce the failure height of overburden but also reduce the 
failure depth of underlying strata. It is the safest and most reliable 
measure for mining on a confined aquifer.

Many scholars have done a lot of research on the methods 
of filling mining to prevent water inrush disasters. For example, 
Peng (Peng et al., 2021) used the high water material filling meth-
od to replace the strip coal pillar on the confined aquifer, analyzed 
the influence of filling body stability and floor failure, and finally 
verified the theoretical feasibility of this technology; Du (Du et al., 
2021) analyzed the failure law and evolution characteristics of 
paste filled floor, and predicted the failure range and water inrush 
of the floor after mining Jia (Jia et al., 2021) quantitatively ana-
lyzed the control effect of strip filling replacement mining on sur-
rounding rock deformation of working face and water diversion 
of the aquifer and Zhang (Zhang et al., 2021) used the methods 
of similarity simulation, theoretical research, and field practice 
to study the relationship between support and surrounding rock, 
ground pressure law of filling face and floor failure law under the 
condition of gangue filling mining.

www.mining.org.tr

The Publication of the Chamber of Mining Engineers of Türkiye



Jiaqi Wang / Scientific Mining Journal, 2023, 62(2), 85-92

86

The above research results have promoted the development 
of mining methods and theories on a confined aquifer, but its ap-
plication effect is not obvious due to many factors such as filling 
material production cost, mining efficiency, and ecological pro-
tection. Therefore, taking the mining on the confined aquifer of 
the Zhaoguan energy mine as the background, this paper puts 
forward the cemented filling mining method to solve the above 
problems. The cementitious material composed of river sand and 
cement is designed, the optimal ratio of materials is studied, and 
the principle of water inrush from the mining floor on a confined 
aquifer is explained based on theoretical calculation. The numer-
ical simulation test scheme is designed to explore the character-
istics of floor instability in the mining process, and the influence 
law of cementitious material and aquifer distance on floor stabil-
ity is obtained. The research results provide a useful reference 
for the study of the safe mining of coal resources on a confined 
aquifer and further enrich the rock stratum control theory of fill-
ing mining.

1. Test conditions

1.1. Geological conditions

Zhaoguan energy mine belongs to Qihe County, De Zhou City, 
Shandong Province. The minefield is located on the west edge of 
Dongtai Anticline of Taishan mountain in north China. The overall 
structural form is a monoclinic structure trending northeast and 
tending northwest, and the dip angle is generally 5~8°. Zhaoguan 
energy mine has a total area of 59.2 km2, a design production ca-
pacity of 0.9 mt/a and a service life of 42.8 a. There are 8 minable 
coal seams in the mine. At present, 11 coal seams are designed to 
be mined. This coal seam is located above the elevation of –400 m, 
and the coal thickness is 0.25~2.92 m, with an average of 2 m. The 
density is 1.5 (g/cm3) and the minability coefficient is 0.8, which 
is a stable coal seam. The roof of coal seam 11 is quartzite, with 
an average thickness of 4 m, compressive strength of 104.2 MPa, 
and high rock integrity. It belongs to class IV’s extremely stable 
floor. The floor is mudstone with compressive strength of 19.2 
MPa, belonging to class I unstable bottom plate. In addition, there 
is Ordovician limestone 40 m below coal seam 11, which is dense 
and hard, with karst fractures developed, and the water pressure 
is about 4.5 MPa. Zhaoguan energy mine adopts cemented filling 
coal mining method to recover coal. The layout of the first mining 
face, production system, and rock stratum histogram is shown in 
Figure 1.

1.2. Mining conditions

The cemented filling coal mining technology designed in this 
project is based on the production of traditional longwall coal min-
ing methods and uses the fully mechanized excavator to excavate 
the connecting roadway between the upper and lower roadway of 
the working face for coal mining. When one connecting roadway 
passes through the two roadways, the cemented filling material is 
used for filling, and the other connecting roadway is excavated at 
the same time. To increase production, multiple excavation faces 
are often arranged in the working face for mining. Compared with 
the traditional cemented filling face layout, this technology can re-
alize the simultaneous operation of mining and filling, and reduce 
the length of the filling pipeline in goaf. It has the advantages of a 
simple system and high efficiency.

The specific mining process is divided into three stages: exca-
vation of connecting roadway, coal transportation by belt convey-
or, and connecting roadway filling. When a connecting roadway is 
excavated by the fully mechanized excavator, it will immediately 
be filled with cemented filling materials. Each connecting roadway 
shall be filled three times to ensure complete filling in the connect-
ing roadway and reduce the lateral pressure on the filling retaining 
wall at the side of the lower roadway. To ensure that adjacent road-
ways will not be affected by mining, the two excavation faces shall 
be separated by more than three connecting roadways (Fahimifar 
and Zareifard, 2009; Liu et al., 2021; Guo et al., 2021), which is 
conducive to improving the stability of roof and floor during an 
unfilled period and reducing the risk of water inrush disaster. The 
cemented filling mining process is shown in Figure 2.

(a) mining and filling technology

(b) filling technology of each connecting roadway

Figure 2. Cemented filling coal mining process

Figure 1. Working face layout, production system, and rock stratum histogram
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Figure 3. Filling material

Figure 4. Stress-strain curve of filling material sample

3. Test principle

A mechanical model is established to study the water inrush 
principle of the floor on the confined aquifer. According to the lit-
erature (Batista Rodriguez et al., 2021; Wang et al. 2021; Xu et al., 
2021), after mining, the floor rock near the end of the working face 
and the inner side of the goaf is greatly affected by the shear fail-
ure, and water inrush is very easy to occur in these places. There-
fore, the filling mining model is established along the advancing 
direction of the longwall face, as shown in Figure 5. Analyze the 
stability of the floor (Fu and Wang., 2021; Wu et al., 2021; Ning 
et al., 2021 ), in the figure, L2 is the influence range of coal wall 
support stress in front of the longwall working face, L1 is the total 
width of the filling connecting roadway behind the solid coal, la is 
the width of the connecting roadway, and q0 is the vertical load 
that the filling body can bear (taken as 2.18 MPa), γh is the over-
burden load, k is the stress concentration factor of the front coal 
wall, P is the pressure of the confined aquifer, and its distance from 
the coal seam floor is h0.

Figure 5. Depth failure model of floor

2. Test material

The test material is river sand as aggregate and cement as a 
binder, which has the characteristics of convenient material ac-
quisition and transportation. The main characteristics of cemen-
titious materials are flow characteristics and mechanical proper-
ties. Among them, the mechanical properties are closely related to 
the stability of the working face floor, which needs to be studied. 
Six groups of proportioning were designed to study the flow char-
acteristics and mechanical properties. The test scheme is shown 
in Table 1.

Table 1. Test scheme

Matching 
number River sand/% Cement/% Concentration /%

S1 90 10 76
S2 90 10 75
S3 90 10 74
S4 90 10 73
S5 85 15 74
S6 95 5 74

2.1. Flow characteristic

The slump is used to describe the flow characteristics of ce-
mentitious materials, and the slump of cementitious materials 
with different ratios is obtained, as shown in Table 2. It can be seen 
from Table 2 that as the slurry concentration gradually decreases 
from 76%, the slump of the filling material first increases to the 
maximum value of 147mm, and then gradually falls. The slump 
value is the maximum when the slurry concentration is 75%. With 
the increase of the cement content, the slump of the filling material 
increases first and then tends to be stable, because the peaceabil-
ity of the filling material is increased after the cement hydration 
reaction, increasing the slump. When the cement content reaches 
10%, the influence of its content on the slump gradually decreases 
and the slump tends to be stable.

Table 2. Slump test results

Matching 
number

River  
sand/% Cement/% Concentration/% Slump/mm

S1 90 10 76 131
S2 90 10 75 147
S3 90 10 74 128
S4 90 10 72 117
S5 85 15 75 138
S6 95 5 75 96

2.2. Mechanical properties

The cemented filling material is pumped to the goaf to main-
tain the good stability of the surrounding rock. A reasonable ratio 
can prevent the destruction of the floor, produce water inrush and 
support the roof. The filling materials of six schemes are made into 
standard samples, cured for 28 d, and tested for the stress-strain 
curves. The samples and test curves are shown in Figure 3 and 
Figure 4. It can be seen from Figure 4 that the strength of cementi-
tious material from high to low is S6 < S2 < S4 < S1 < S3 < S5, which 
are 0.55 MPa, 1.22 MPa, 1.24 MPa, 1.42 MPa, 1.49 MPa, and 2.02 
MPa respectively. Cementitious materials with a concentration of 
75% and a cement content of 15% shall be chosen.
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Then the model roof stress function is:  
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The stress component function at any point of the floor ob-
tained by integration is:
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(3)

Using Coulomb Moore criterion, the maximum shear stress at 
any point under the floor can be obtained as follows:

2
2

max

( )
2

x y
xy

s s
t t

−
= +

                                             
(4)

It can be seen that when the stress at any point of the floor 
reaches or exceeds its strength, the point will yield failure. The fail-
ure criterion of any point below the floor is established as follows:

2
max( tan c) / tan 1

2
x ys s

j j t
+

+ + ≥
                    

(5)

Then the instability judgment function of filling coal mining 
floor is:

2
max( , ) ( tan c) / tan 1

2
x yF x y

s s
j j t

−
= + + −

   (6)

When f (x, y) < 0, the lower point of the floor is in a yield failure 
state. Bring the mechanical parameters of Zhaoguan energy mine 
rock into Equation (6), and take the friction angle in the floor φ = 
30 °, cohesion c = 2.8 MPa, the range of influence of support pres-
sure on the front coal body l2 = 40 m, and stress concentration fac-
tor k = 2.1. The critical state curve of floor instability can be made, 
as shown in Figure 6.

Figure 6. Distribution of function f (x, y)

It can be seen from Figure 6 that the maximum failure depth 
of the coal seam floor is 12.4 m, which occurs 3.49 m behind the 
solid coal. The maximum depth failure point of the bottom plate 
is still 37 m away from the confined aquifer. At the same time, the 
analysis of Equation (6) shows that the strength of the filling body, 
the location of the confined aquifer, and the water pressure of the 
aquifer have a great impact on the stability of the floor.

4. Test method and scheme

4.1. Test method

FLAC3D fluid-structure coupling model is used to analyze 
the law of floor instability under the influence of mining and 
confined aquifer. In the FLAC3D fluid-structure coupling mod-
ule, the rock mass is regarded as a porous medium, and the fluid 
meets Darcy’s law and Biot’s classical seepage equation (Duan 
and Zhao, 2021; Zhang et al., 2021; Shi et al., 2021). After enter-
ing the fluid-structure coupling calculation mode, the reasonable 
selection of rock mass and fluid seepage parameters has a great 
impact on the calculation results. According to the borehole his-
togram of the Zhaoguan energy mining area and the physical 
mechanics and seepage parameters of different lithologies in the 
North China mining area, the numerical simulated coal and rock 
mass physical mechanics parameters and seepage parameters 
are designed in Table 3. The mohr-Coulomb constitutive model 
is adopted for rock mass and fluid is adopted for the fluid_ iso 
isotropic model.
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Table 3. The parameters of physical and mechanical coal and rock mass and percolation

Lithology   Bulk density / 
   Kg·m-3

tensile strength / 
MPa

internal friction  
angle

cohesion / 
MPa

Elastic model / 
 GPa

Poisson’s  
ratio

Permeability coefficient / 
m2·Pa-1·sec-1

Fluid density /
Kg·m-3

Siltstone   2500 0.3 35 3.2 6 3.2 1e-10 1e3
4th Quartzite   2600 0.5 37 3.5 5 2.0 1e-8 1e3
5th Quartzite   2600 0.5 40 8.1 13.9 9.1 1e-8 1e3
11coal 2573 0.08 25 0.5 0.2 0.1 1e-7 1e3
1st Mudstone 2500 0.4 35 2.2 2.25   0.5 1e-10 1e3
2nd Mudstone 2520 0.4 35 2.2 2.25   0.5 1e-10 1e3
Siltstone 2500 0.3 37 3.2 6   3.2 1e-9 1e3
Ordovician limestone 2610 0.3 35 3.6 3.3   2.0 1e-8 1e3

The numerical calculation model of cemented filling mining 
is established, and the size of the model is 100x120x67 m. Fully 
constrained boundary conditions are adopted at the bottom and 
around the model, vertical stress of 7.5 MPa is applied at the top 
to simulate the pressure of overburden on the model and a perme-
able seepage boundary with a fixed water pressure of 4.5 MPa is 
applied at the bottom to simulate the pressure of confined aquifer. 
After excavation, the goaf adopts drainage boundary conditions 
(Ma et al., 2019; Ma et al., 2019; Ma et al., 2021), and the model 
is established as shown in Figure 7. ① ~ ④ in the Figure 7 is the 
first step of filling and mining to the fourth step of filling and min-
ing. The width of each connecting roadway is 4.5 m.

Figure 7. Numerical model of cemented filling mining

4.2. Test scheme

After the model is established, the initial balance calculation is 
carried out, and then mining and filling are carried out. The design 
working face adopts two excavation faces for mining, and the over-
all mining sequence is Mining ① - filling ① - mining ② - filling 
② - mining ③ - filling ③ - mining ④. In the mining process of 
working face, the development of a plastic zone of floor and pore 
water pressure are observed and analyzed.

In the subsequent tests, three parameters of backfill strength, 
aquifer distance, and water pressure were adjusted to analyze 
their influence on the stability of the floor. The strength of the fill-
ing body is selected from six proportioning schemes such as S6, S2, 
S4, S1, S3, and S5. The aquifer distance is designed as 10 m, 20 m, 
30 m, 40 m, 50 m, 60 m, 70 m, 80 m, and 90 m. The water pressure 
of the aquifer is 0 MPa, 0.5 MPa, 1.0 MPa, 1.5 MPa, 2.0 MPa, 2.5 
MPa, 3.0 MPa, 3.5 Mpa, 4.0 Mpa, 4.5 MPa and 5 MPa respectively.

5. Test results and discussion

5.1. Law of floor instability during cemented filling mining

During the mining cycle, the state zone module is used to an-
alyze the plastic zone of the excavation and filling area, and the 
distribution characteristics of the plastic failure zone of the floor 
are obtained as shown in Figure 8.

         

(a) Mining and filling ①                           (b) Mining and filling②

    

(c) Mining and filling ③                            (d) Mining and filling④

Figure 8. Distribution characteristics of plastic failure of the floor

It can be seen from Figure 8 that the failure type of rock mass 
in the process of excavation and filling is mainly shear failure. With 
the continuous excavation and filling of connecting roadways, the 
plastic failure area of the floor rock mass in the mining area is con-
tinuously connected and deepened. When excavating and filling 
①, the maximum failure depth of the plastic area of the coal seam 
floor is 4 m and symmetrically distributed. When excavating and 
filling ④, The maximum damage depth of the coal seam floor is 7 
m, which occurs in the middle of the mining area and is far away 
from the Ordovician limestone. The water diversion failure zone 
cannot relate to the uplift zone of the confined water layer (Yan et 
al., 2021; Zhang and Wang, 2007; Zhang et al., 2015), which elimi-
nates the risk of water inrush.

At the same time, when a connecting roadway is excavated, 
the coal near the roadway is vulnerable to shear damage. The 
“skip mining” method is adopted to mine at a far position from 
the mined connecting roadway. After the filling body is stable, min-
ing at a closer position can effectively prevent the occurrence of 
coal wall caving and other phenomena. As the roof lithology of the 
Zhaoguan energy mine is limestone with good stability, and the 
above methods are used for coal mining, the roof stability is good. 
Tension failure occurs only in the middle of the connecting road-
way, and the depth is less than 1 m.
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4.2.2. Analysis of pore water pressure in mining

In the process of mining, the pore water pressure of the model 
is analyzed by calling the pore pressure module, and the pore wa-
ter pressure distribution is shown in Figure 9.

 

(a) Mining and filling ①  

(b) Mining and filling ②

   

(c) Mining and filling ③

(d) Mining and filling ④ 

Figure 9. Pore water pressure distribution

It can be seen from Figure 9 that the pore water pressure in-
creases fastest on both sides of the connecting roadway and the 
mining area. It can be seen that water inrush disasters are very 
easy to occur near the goaf and the mining area boundary, and 
attention should be paid to the prevention and control of water 
inrush in this area. In addition, the water-conducting boundary of 
bedrock (Zhou et al., 2016; Zhang et al., 2015; Yin et al., 2020) al-
ways exceeds the mining boundary, and the seepage velocity of the 
lower rock stratum is always greater than that of the upper rock 
stratum.

5.2. Law of floor instability under the influence of strength of cemen-
titious material

The influence law of cementitious material on the failure 
depth of the floor is obtained, as shown in Figure 10. As can be 
seen from Figure 10, as the strength of the filling body gradually 
increases, the failure depth of the floor gradually decreases. When 
the strength of the filling body is 0.55 MPa, 1.22 MPa, 1.24 MPa, 
1.42 MPa, 1.49 MPa, and 2.02 MPa, the failure depth of the floor is 
14.02 m, 12.89 m, 10.34 m, 9.22 m, 8.89 m, and 8.02 m respective-
ly. Therefore, filling cementitious materials can effectively prevent 
water inrush.

Figure 10. Effect of the strength of cementitious material on failure depth 
of the floor

5.3. Law of floor instability under the influence of aquifer distance 
and water pressure

The influence law of aquifer distance on floor failure depth is 
obtained, as shown in Figure 11. The influence law of water pres-
sure on the failure depth of the floor is also obtained, as shown in 
Figure 12. As can be seen from Figures 11 and 12, with the contin-
uous increase of the pressure of the confined aquifer, the failure 
depth of the bottom plate gradually increases. When the pressure 
of the confined aquifer is greater than 2 MPa, the failure depth of 
the bottom plate increases obviously. With the gradual increase of 
the distance between the confined aquifer and the coal seam, the 
damage depth of the floor gradually decreases. However, it can be 
seen that the floor of the working face is always greatly affected 
by the confined aquifer when the aquifer depth increases from 10 
m to 90 m. It can be seen that the problem of the confined aquifer 
cannot be ignored in the safe mining of coal mines, and the guar-
antee measures for the safe mining on the confined aquifer should 
always be taken.
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Figure 11. Effect of water pressure on failure depth of the floor 

Fig. 12 Effect of confined aquifer depth on failure depth of the floor

6. Conclusion

To realize safe mining above the confined aquifer, this paper 
puts forward the cemented filling mining method, designs the best 
ratio of cemented materials, and explains the principle of water 
inrush from the mining floor on the confined aquifer based on 
theoretical calculation. The numerical simulation test scheme is 
designed to explore the characteristics of floor instability in the 
mining process. The specific conclusions are as follows:

(1) Given the technical problems of mining on the confined 
aquifer in the Zhaoguan energy mine, a cemented filling mining 
method is proposed. Combined with the actual conditions of the 
mining area, the filling material ratio of Yellow River Sediment: Ce-
ment = 0.85:0.15 is designed, the slump reaches 138 mm and the 
strength reaches 2.02 MPa.

(2) Based on the elastic space half-space theory, the mechan-
ical model of floor instability in cemented filling coal mining is 
established, the critical criterion formula of floor instability is 
deduced, the principle of floor instability on confined aquifer is 
explained, and the maximum failure depth of working face floor is 
determined to be 12.4 m. At the same time, it is obtained that the 
strength of cemented material, aquifer distance, and aquifer water 
pressure are the main factors affecting floor stability.

(3) Based on the analysis of the calculation results of the flu-
id-structure coupling numerical model, it can be seen that the 
surrounding rock damage during the excavation and filling of the 
connecting roadway is mainly shear damage, and water inrush is 
very easy to occur in the goaf and the boundary of the mining area. 
At the same time, with the increase in the strength of cementitious 
material, the increase in aquifer distance, and the decrease in wa-
ter pressure, the failure depth of the floor decreases gradually.

(4) The numerical simulation test shows that when the aquifer 
distance is 40 m, the water pressure is 4.5 MPa and the strength of 
cementitious material is 2.02 MPa, the failure depth of the floor is 
far less than 15 m, which is consistent with the theoretical settle-
ment results, which proves that this method can effectively solve 
the problem of floor water inrush.
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Due to low production cost, coal is still the most important source of electricity production worldwide. This important position of coal also makes 
the evaluation of coal resources important. One of the most important attributes to be assessed in this evaluation is estimating the calorific value 
distribution of deposit. In geostatistical estimation currently kriging and its variants are being used widely. Alternatively new techniques are being 
developed and one of them is the Radial Based Functions based method. In this study, Conditioned Radial Basis Function (CRBF) is used to estimate 
the calorific value distribution of a coal deposit while estimations are also performed with ordinary kriging (OK). Results of both estimation meth-
ods are compared with respect to composite calorific values. Results show that CRBF produced a higher estimation range than OK with closer mean 
to composite. However, like OK, results are still smoother than the composite values.  
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Introduction

Coal is the most important natural resource used for electricity 
generation in the world, with a share of 38.3% in electrical energy 
production. In Türkiye, 37.1% of the electrical energy is covered 
by coal, like the world, and it takes the status of the most import-
ant electrical energy source for Türkiye which is the 19th biggest 
economy in the world. The total coal reserve of the world is ap-
proximately 1.07 trillion tons with annual coal consumption of 8 
billion tons.  The relationship between reserves and consumption 
in the world is similar in Türkiye while total coal reserve of the 
Türkiye is 19.32 billion tons, while coal consumption is around 
115 million tons (Turkish Coal Enterprises, 2021). As can be seen, 
when the reserve and consumption rates are examined both in 
the world and in Türkiye, coal is the most important natural re-
source that supports sustainable electricity generation today. For 
this reason, it is of great importance to reveal the coal resources.

The most important variable in coal resources is the calorif-
ic value (Chelgani, 2021). A coal asset with insufficient calorific 
value cannot be considered as a coal source. The calorific value in 
coal beds varies depending on the location (Olea et al., 2011). It is 
not possible to take steps such as feasibility and production plan-

ning without modeling this variability. For this reason, the calo-
rific value variability in coal resources and the amount of coal re-
sources have been the subject of many studies. Fang et al. (1980) 
examined the usability of geostatistical methods in the estima-
tion of coal resources. In addition, Srivastava (2013) noted the 
widespread use of geostatistical methods in revealing the spatial 
variability of coal resources and referred to many related studies. 
Demirel et al. (2000) performed resource estimation of the coal 
field in the Çanakçı, which is located in Ermenek region, using the 
kriging method. Tercan and Karayiğit (2001), carried out coal re-
source estimation studies in Kalburçayırı in Sivas - Kangal region 
and Tercan et al. (2013) revealed some coal resources in Western 
Anatolia. Whateley et al. (1997) coal resource estimations with 
different methods and compared the methods in the Turgut coal 
deposit located in Muğla-Yatağan. Inaner et al. (2008) on the other 
hand, made the resource estimation of the Bayır field in Yatağan. 
Ertunc et al. (2013) estimated the variability of calorific value in 
coal beds which was modeled by covariance-matched kriging. On 
the other hand, Afzal (2018) made a coal resource estimation us-
ing kriging and inverse distance methods in Parvadeh coal depos-
it in Iran and evaluated the results. Jeuken et al. (2020) compared 
the inverse distance weighting and kriging techniques in a coal 
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deposit in Queensland, Australia. They made resource estimation 
using many methods. Sideri et al. (2020) estimated the mean low-
er calorific value of coal by using ordinary kriging methods. In this 
study, methods such as ordinary kriging, covariance-matching 
kriging and inverse distance weighting methods were used. The 
methods used in coal resource estimation are still in the devel-
opment stage. For example, Atalay and Tercan (2017) conducted 
coal resource estimation with Copulas. In the framework of newly 
developing approaches, radial basis function estimation has never 
been used in the estimation of coal resources (Atalay et al. 2021).

In mineral resource estimation, in addition to classical meth-
ods such as inverse distance and kriging, relatively new advanced 
methods such as radial basis functions are also used. Due to the 
nature of the method, estimations made with radial basis func-
tions do not meet the requirements for resource estimation to be 
positive definite and the estimation to be within a certain range. 
For this reason, direct estimation with radial basis functions will 
generate erroneous results. For this reason, a new approach is 
needed to make estimation with radial basis functions. 

Since the radial basis function cannot be used in direct estima-
tion safely, in this study, estimation is made using the conditioned 
radial basis function developed using radial basis functions and 
results were compared with kriging. For the purpose of estima-
tion, first of all, a 3D model of the coal bed was created. After that, 
the kriging steps were applied. For kriging, the experimental var-
iogram was calculated and the model variogram was fitted and the 
calorific value was estimated by ordinary kriging. After the kriging 
process, the calorific value of the coal was estimated by the condi-
tioned radial basis function. As a result, kriging and the developed 
conditioned radial basis function interpolation are compared in 
terms of summary statistics. 

1. Method

1.1. Ordinary Kriging

Kriging is basically an interpolation method based on the min-
imization of error variances using distance-based variability. To 
perform estimation using kriging, the variability depending on the 
distance must first be determined (Thomas, 2013). Variability due 
to distance is usually obtained by calculating experimental vario-
gram values. The experimental variogram is calculated as shown 
in Eq. 1 (Cressie,1990, Journel and Huijbregts, 1978)
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In general, experimental variogram calculation step is followed by model fitting step. Until now, many 
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Here; 𝐶𝐶2 is nugget effect, 𝐶𝐶 is sill value, h is distance and  𝑎𝑎 is range.  

By fitting the variogram model, it is possible to set up kriging equations. The kriging method, like many 
other estimation methods, works by assigning weights to the data adjacent to the desired location (Eq. 
3)Pardo-Iquzquiza et al. 2013). 

𝑧𝑧(𝑥𝑥2) = 𝜆𝜆) ∗,
)-$ 𝑧𝑧 𝑥𝑥) 		 	 	 	 	 	 	 	 	 (3)	

Here;	𝑧𝑧(𝑥𝑥2) is estimation point, 𝜆𝜆) is estimation weight and 𝑧𝑧 𝑥𝑥)  shows estimation location. Estimation 
methods differ from each other by calculating the estimation weight in a different way (Eq. 4) (Rossi 
and Deutsch 2013, Rossi and Deutsch, 2014).  
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Here; 𝐶𝐶2 is nugget effect, 𝐶𝐶 is sill value, h is distance and  𝑎𝑎 is range.  

By fitting the variogram model, it is possible to set up kriging equations. The kriging method, like many 
other estimation methods, works by assigning weights to the data adjacent to the desired location (Eq. 
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estimation point and sample point. As seen in Equation 4, the sum of the weights used in the estimation 
equals 1. A matrix equation that satisfies the conditions above is given in Eq. 5 (Myers,1992, Olea et 
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By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
Radial basis functions are first introduced to estimate topography and other irregular surfaces while 
scattered data is available (Hardy, 1971).  It is used for many applications in engineering problems in 
engineering and scientific problems while interpolation is one of them. Radial basis functions are 
effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
that takes values based on the distance from origin or center point (Eq. 6).  
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Here ∅ 𝑥𝑥  is radial function, .  is distance operator and 𝑐𝑐 is center.  

RBF is always positively defined even though some inputs are negative. In RBF distance is generally 
measured in Euclidean form. Most widely used RBFs are given in Table 1.  

Table 1 Some radial basis functions (Schagen, 1979). 

RBFs ∅ 𝒙𝒙 	
Gaussian 𝑒𝑒I(JK)L 	
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In table 1 c and r parameters determine the shape of the function which affects the function output value. 
As seen from the table many alternative kernel functions are available. However, Gaussian kernel is the 
most widely used one.  

Estimation with radial basis function, like in kriging, depends on the estimation of the weights associated 
with sampling points. Although the method is quite similar to kriging, the only difference is that a radial 
basis function f ..  processor is used instead of the variogram value of the distance between the 
𝑧𝑧 𝑥𝑥)  measurement values of the equation established on the left side of the matrix equation. Also, on 
the right side of the equation, the f interpolant is used in a similar way. 
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𝑧𝑧 𝑥𝑥)  measurement values of the equation established on the left side of the matrix equation. Also, on 
the right side of the equation, the f interpolant is used in a similar way. 
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In this case, the matrix equation yielded for the purpose of estimation is given in the Eq. 8.  
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Here,	𝜇𝜇	is Lagrange multiplier and 𝛾𝛾 𝑥𝑥), 𝑥𝑥@ 	variogram value of that corresponds to distance between 
estimation point and sample point. As seen in Equation 4, the sum of the weights used in the estimation 
equals 1. A matrix equation that satisfies the conditions above is given in Eq. 5 (Myers,1992, Olea et 
al., 2011, Olea, 2012).  
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By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
Radial basis functions are first introduced to estimate topography and other irregular surfaces while 
scattered data is available (Hardy, 1971).  It is used for many applications in engineering problems in 
engineering and scientific problems while interpolation is one of them. Radial basis functions are 
effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
that takes values based on the distance from origin or center point (Eq. 6).  

∅ 𝑥𝑥 = ∅ 𝑥𝑥) 	𝑜𝑜𝑜𝑜	∅ 𝑥𝑥 = ∅ 𝑥𝑥) − 𝑐𝑐 	        (6)  
Here ∅ 𝑥𝑥  is radial function, .  is distance operator and 𝑐𝑐 is center.  

RBF is always positively defined even though some inputs are negative. In RBF distance is generally 
measured in Euclidean form. Most widely used RBFs are given in Table 1.  

Table 1 Some radial basis functions (Schagen, 1979). 

RBFs ∅ 𝒙𝒙 	
Gaussian 𝑒𝑒I(JK)L 	
Multiquadric 𝑜𝑜% + 𝑐𝑐%	
Inverse Multiquadric 1

𝑜𝑜% + 𝑐𝑐%
	

Inverse Quadratic 
 

1
𝑜𝑜% + 𝑐𝑐%

	

 

In table 1 c and r parameters determine the shape of the function which affects the function output value. 
As seen from the table many alternative kernel functions are available. However, Gaussian kernel is the 
most widely used one.  

Estimation with radial basis function, like in kriging, depends on the estimation of the weights associated 
with sampling points. Although the method is quite similar to kriging, the only difference is that a radial 
basis function f ..  processor is used instead of the variogram value of the distance between the 
𝑧𝑧 𝑥𝑥)  measurement values of the equation established on the left side of the matrix equation. Also, on 
the right side of the equation, the f interpolant is used in a similar way. 

𝜆𝜆) ∗,
)-$ ∅ 𝑥𝑥) − 𝑥𝑥@ =f								 	 	 	 	 	 	 	 	 (7)	

In this case, the matrix equation yielded for the purpose of estimation is given in the Eq. 8.  
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Here,	𝜇𝜇	is Lagrange multiplier and 𝛾𝛾 𝑥𝑥), 𝑥𝑥@ 	variogram value of that corresponds to distance between 
estimation point and sample point. As seen in Equation 4, the sum of the weights used in the estimation 
equals 1. A matrix equation that satisfies the conditions above is given in Eq. 5 (Myers,1992, Olea et 
al., 2011, Olea, 2012).  
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By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
Radial basis functions are first introduced to estimate topography and other irregular surfaces while 
scattered data is available (Hardy, 1971).  It is used for many applications in engineering problems in 
engineering and scientific problems while interpolation is one of them. Radial basis functions are 
effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
that takes values based on the distance from origin or center point (Eq. 6).  

∅ 𝑥𝑥 = ∅ 𝑥𝑥) 	𝑜𝑜𝑜𝑜	∅ 𝑥𝑥 = ∅ 𝑥𝑥) − 𝑐𝑐 	        (6)  
Here ∅ 𝑥𝑥  is radial function, .  is distance operator and 𝑐𝑐 is center.  

RBF is always positively defined even though some inputs are negative. In RBF distance is generally 
measured in Euclidean form. Most widely used RBFs are given in Table 1.  

Table 1 Some radial basis functions (Schagen, 1979). 

RBFs ∅ 𝒙𝒙 	
Gaussian 𝑒𝑒I(JK)L 	
Multiquadric 𝑜𝑜% + 𝑐𝑐%	
Inverse Multiquadric 1

𝑜𝑜% + 𝑐𝑐%
	

Inverse Quadratic 
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𝑜𝑜% + 𝑐𝑐%

	

 

In table 1 c and r parameters determine the shape of the function which affects the function output value. 
As seen from the table many alternative kernel functions are available. However, Gaussian kernel is the 
most widely used one.  

Estimation with radial basis function, like in kriging, depends on the estimation of the weights associated 
with sampling points. Although the method is quite similar to kriging, the only difference is that a radial 
basis function f ..  processor is used instead of the variogram value of the distance between the 
𝑧𝑧 𝑥𝑥)  measurement values of the equation established on the left side of the matrix equation. Also, on 
the right side of the equation, the f interpolant is used in a similar way. 
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In this case, the matrix equation yielded for the purpose of estimation is given in the Eq. 8.  
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Here,	𝜇𝜇	is Lagrange multiplier and 𝛾𝛾 𝑥𝑥), 𝑥𝑥@ 	variogram value of that corresponds to distance between 
estimation point and sample point. As seen in Equation 4, the sum of the weights used in the estimation 
equals 1. A matrix equation that satisfies the conditions above is given in Eq. 5 (Myers,1992, Olea et 
al., 2011, Olea, 2012).  
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By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
Radial basis functions are first introduced to estimate topography and other irregular surfaces while 
scattered data is available (Hardy, 1971).  It is used for many applications in engineering problems in 
engineering and scientific problems while interpolation is one of them. Radial basis functions are 
effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
that takes values based on the distance from origin or center point (Eq. 6).  

∅ 𝑥𝑥 = ∅ 𝑥𝑥) 	𝑜𝑜𝑜𝑜	∅ 𝑥𝑥 = ∅ 𝑥𝑥) − 𝑐𝑐 	        (6)  
Here ∅ 𝑥𝑥  is radial function, .  is distance operator and 𝑐𝑐 is center.  

RBF is always positively defined even though some inputs are negative. In RBF distance is generally 
measured in Euclidean form. Most widely used RBFs are given in Table 1.  

Table 1 Some radial basis functions (Schagen, 1979). 

RBFs ∅ 𝒙𝒙 	
Gaussian 𝑒𝑒I(JK)L 	
Multiquadric 𝑜𝑜% + 𝑐𝑐%	
Inverse Multiquadric 1

𝑜𝑜% + 𝑐𝑐%
	

Inverse Quadratic 
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𝑜𝑜% + 𝑐𝑐%

	

 

In table 1 c and r parameters determine the shape of the function which affects the function output value. 
As seen from the table many alternative kernel functions are available. However, Gaussian kernel is the 
most widely used one.  

Estimation with radial basis function, like in kriging, depends on the estimation of the weights associated 
with sampling points. Although the method is quite similar to kriging, the only difference is that a radial 
basis function f ..  processor is used instead of the variogram value of the distance between the 
𝑧𝑧 𝑥𝑥)  measurement values of the equation established on the left side of the matrix equation. Also, on 
the right side of the equation, the f interpolant is used in a similar way. 
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In this case, the matrix equation yielded for the purpose of estimation is given in the Eq. 8.  
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Here,	𝜇𝜇	is Lagrange multiplier and 𝛾𝛾 𝑥𝑥), 𝑥𝑥@ 	variogram value of that corresponds to distance between 
estimation point and sample point. As seen in Equation 4, the sum of the weights used in the estimation 
equals 1. A matrix equation that satisfies the conditions above is given in Eq. 5 (Myers,1992, Olea et 
al., 2011, Olea, 2012).  
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By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
Radial basis functions are first introduced to estimate topography and other irregular surfaces while 
scattered data is available (Hardy, 1971).  It is used for many applications in engineering problems in 
engineering and scientific problems while interpolation is one of them. Radial basis functions are 
effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
that takes values based on the distance from origin or center point (Eq. 6).  

∅ 𝑥𝑥 = ∅ 𝑥𝑥) 	𝑜𝑜𝑜𝑜	∅ 𝑥𝑥 = ∅ 𝑥𝑥) − 𝑐𝑐 	        (6)  
Here ∅ 𝑥𝑥  is radial function, .  is distance operator and 𝑐𝑐 is center.  

RBF is always positively defined even though some inputs are negative. In RBF distance is generally 
measured in Euclidean form. Most widely used RBFs are given in Table 1.  

Table 1 Some radial basis functions (Schagen, 1979). 

RBFs ∅ 𝒙𝒙 	
Gaussian 𝑒𝑒I(JK)L 	
Multiquadric 𝑜𝑜% + 𝑐𝑐%	
Inverse Multiquadric 1

𝑜𝑜% + 𝑐𝑐%
	

Inverse Quadratic 
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𝑜𝑜% + 𝑐𝑐%

	

 

In table 1 c and r parameters determine the shape of the function which affects the function output value. 
As seen from the table many alternative kernel functions are available. However, Gaussian kernel is the 
most widely used one.  

Estimation with radial basis function, like in kriging, depends on the estimation of the weights associated 
with sampling points. Although the method is quite similar to kriging, the only difference is that a radial 
basis function f ..  processor is used instead of the variogram value of the distance between the 
𝑧𝑧 𝑥𝑥)  measurement values of the equation established on the left side of the matrix equation. Also, on 
the right side of the equation, the f interpolant is used in a similar way. 
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In this case, the matrix equation yielded for the purpose of estimation is given in the Eq. 8.  
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Here,	𝜇𝜇	is Lagrange multiplier and 𝛾𝛾 𝑥𝑥), 𝑥𝑥@ 	variogram value of that corresponds to distance between 
estimation point and sample point. As seen in Equation 4, the sum of the weights used in the estimation 
equals 1. A matrix equation that satisfies the conditions above is given in Eq. 5 (Myers,1992, Olea et 
al., 2011, Olea, 2012).  
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By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
Radial basis functions are first introduced to estimate topography and other irregular surfaces while 
scattered data is available (Hardy, 1971).  It is used for many applications in engineering problems in 
engineering and scientific problems while interpolation is one of them. Radial basis functions are 
effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
that takes values based on the distance from origin or center point (Eq. 6).  

∅ 𝑥𝑥 = ∅ 𝑥𝑥) 	𝑜𝑜𝑜𝑜	∅ 𝑥𝑥 = ∅ 𝑥𝑥) − 𝑐𝑐 	        (6)  
Here ∅ 𝑥𝑥  is radial function, .  is distance operator and 𝑐𝑐 is center.  

RBF is always positively defined even though some inputs are negative. In RBF distance is generally 
measured in Euclidean form. Most widely used RBFs are given in Table 1.  

Table 1 Some radial basis functions (Schagen, 1979). 

RBFs ∅ 𝒙𝒙 	
Gaussian 𝑒𝑒I(JK)L 	
Multiquadric 𝑜𝑜% + 𝑐𝑐%	
Inverse Multiquadric 1

𝑜𝑜% + 𝑐𝑐%
	

Inverse Quadratic 
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In table 1 c and r parameters determine the shape of the function which affects the function output value. 
As seen from the table many alternative kernel functions are available. However, Gaussian kernel is the 
most widely used one.  

Estimation with radial basis function, like in kriging, depends on the estimation of the weights associated 
with sampling points. Although the method is quite similar to kriging, the only difference is that a radial 
basis function f ..  processor is used instead of the variogram value of the distance between the 
𝑧𝑧 𝑥𝑥)  measurement values of the equation established on the left side of the matrix equation. Also, on 
the right side of the equation, the f interpolant is used in a similar way. 
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In this case, the matrix equation yielded for the purpose of estimation is given in the Eq. 8.  
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Here,	𝜇𝜇	is Lagrange multiplier and 𝛾𝛾 𝑥𝑥), 𝑥𝑥@ 	variogram value of that corresponds to distance between 
estimation point and sample point. As seen in Equation 4, the sum of the weights used in the estimation 
equals 1. A matrix equation that satisfies the conditions above is given in Eq. 5 (Myers,1992, Olea et 
al., 2011, Olea, 2012).  
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By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
Radial basis functions are first introduced to estimate topography and other irregular surfaces while 
scattered data is available (Hardy, 1971).  It is used for many applications in engineering problems in 
engineering and scientific problems while interpolation is one of them. Radial basis functions are 
effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
that takes values based on the distance from origin or center point (Eq. 6).  
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RBF is always positively defined even though some inputs are negative. In RBF distance is generally 
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In table 1 c and r parameters determine the shape of the function which affects the function output value. 
As seen from the table many alternative kernel functions are available. However, Gaussian kernel is the 
most widely used one.  

Estimation with radial basis function, like in kriging, depends on the estimation of the weights associated 
with sampling points. Although the method is quite similar to kriging, the only difference is that a radial 
basis function f ..  processor is used instead of the variogram value of the distance between the 
𝑧𝑧 𝑥𝑥)  measurement values of the equation established on the left side of the matrix equation. Also, on 
the right side of the equation, the f interpolant is used in a similar way. 
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In this case, the matrix equation yielded for the purpose of estimation is given in the Eq. 8.  

In table 1 c and r parameters determine the shape of the func-
tion which affects the function output value. As seen from the table 
many alternative kernel functions are available. However, Gauss-
ian kernel is the most widely used one. 

Estimation with radial basis function, like in kriging, depends 
on the estimation of the weights associated with sampling points. 
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Figure 1. Plan view of the drillings 

As seen in Figure 1, the average distance between the drillings 
is 500 m and the drilling frequency varies. Drilling frequency is 
approximately 800 m in the southwestern parts, while it is around 
400 m in the northern parts. For the purpose of estimation, first of 
all, a 3D geological model of the coal seam was created. The section 
method, which is the most commonly used method in creating a 
geological model, was used and the model obtained is shown in 
Figure 2.

 

Figure 2. Solid model top view

With the creation of the 3D solid model, a block model was cre-
ated to make estimations. Block dimensions were determined as 
25 x 25 and 1 m in X, Y and Z directions, respectively. As a result 
of this process, the total blocks were created, and these are shown 
in Figure 3.

Figure 3. Block model top view 
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By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
Radial basis functions are first introduced to estimate topography and other irregular surfaces while 
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engineering and scientific problems while interpolation is one of them. Radial basis functions are 
effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
that takes values based on the distance from origin or center point (Eq. 6).  
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By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
Radial basis functions are first introduced to estimate topography and other irregular surfaces while 
scattered data is available (Hardy, 1971).  It is used for many applications in engineering problems in 
engineering and scientific problems while interpolation is one of them. Radial basis functions are 
effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
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In table 1 c and r parameters determine the shape of the function which affects the function output value. 
As seen from the table many alternative kernel functions are available. However, Gaussian kernel is the 
most widely used one.  

Estimation with radial basis function, like in kriging, depends on the estimation of the weights associated 
with sampling points. Although the method is quite similar to kriging, the only difference is that a radial 
basis function f ..  processor is used instead of the variogram value of the distance between the 
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By solving the kriging matrix equation, the estimation weights are calculated, and thus estimations can 
be performed by placing the unknown weights in Eq. 3.  

1.2. Radial Basis Function 
Radial basis functions are first introduced to estimate topography and other irregular surfaces while 
scattered data is available (Hardy, 1971).  It is used for many applications in engineering problems in 
engineering and scientific problems while interpolation is one of them. Radial basis functions are 
effective tool for data interpolation problems	(Schaback and Wendland,2001).  

The main characteristic of the radial basis function is value of the function is changes monotonically with 
distance respect to central point (Orr, 1996).  A radial basis function (RBF) can be defined as a function 
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In Eq. 7 the distance of all values to be used in the estimation is the value of the kernel function used, 
and , 𝑓𝑓 𝑥𝑥  represents the value of the function at the relevant distance. Accordingly, with the solution of 
the matrix equation for all λ's, that is, the weights to be used in the estimation, the estimation process is 
performed as in the Eq. 3. 

The estimation of radial basis functions is in the range ±∞	due to the nature of the operators. However, 
it is not possible for mineral resources to have a negative value. In addition, mineral resources reach a 
limited value. For example, the average calorie of the known best quality coal occurrences is around 
8000 kCal/kg. As can be seen, the radial basis function that generates estimation results in the range 
of ±∞	can not be used directly in mineral resource estimation. For this reason, the method should be 
adapted to mineral resource estimation. 

1.3. Conditioned Radial Basis Function  
Since radial basis functions cannot be used in direct estimation, in this study, the estimation approach 
with conditioned radial basis functions, which is suitable for resource estimation, that guarantees positive 
definiteness and where the estimation results are within the desired limits, is used. This approach differs 
from the original approach in two points: 

1) In estimation, only neighboring data is used. 
2) Changing the kernel function cr parameter if the estimation is not within the desired range.  

The goal in the first step given above is to increase the probability that the results to be in the desired 
range by performing regional conditioning.	However, the results obtained in this step may not always be 
within the desired ranges.	For this reason, an additional step was needed in the method. In this step, if 
the estimation is not within the desired range, the cr parameter shown in Table 1 is changed 
systematically. cr value is assigned, starting from zero, and it is checked whether the estimated value is 
within the desired range. The cr value is increased until the estimation is within the desired range. 

2. Case Study 
A coal field in the Türkiye-Thrace region was used for the application. A total of 128 vertical drillings with 
a length of 38 326 m were made in the field.	The total thickness of coal cut from these drillings is 876 
m. The coal seams are relatively thin, and the thickness of the coal seam is 6.5 m. The drillings made 
are shown in Figure 1. 
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In Eq. 7 the distance of all values   to be used in the estimation 
is the value of the kernel function used, and ,  represents the val-
ue of the function at the relevant distance. Accordingly, with the 
solution of the matrix equation for all λ›s, that is, the weights to 
be used in the estimation, the estimation process is performed as 
in the Eq. 3.

The estimation of radial basis functions is in the range due to 
the nature of the operators. However, it is not possible for mineral 
resources to have a negative value. In addition, mineral resourc-
es reach a limited value. For example, the average calorie of the 
known best quality coal occurrences is around 8000 kCal/kg. As 
can be seen, the radial basis function that generates estimation re-
sults in the range of can not be used directly in mineral resource 
estimation. For this reason, the method should be adapted to min-
eral resource estimation.

1.3. Conditioned Radial Basis Function 

Since radial basis functions cannot be used in direct estima-
tion, in this study, the estimation approach with conditioned radi-
al basis functions, which is suitable for resource estimation, that 
guarantees positive definiteness and where the estimation results 
are within the desired limits, is used. This approach differs from 
the original approach in two points:

1) In estimation, only neighboring data is used.

2) Changing the kernel function cr parameter if the estimation 
is not within the desired range. 

The goal in the first step given above is to increase the prob-
ability that the results to be in the desired range by performing 
regional conditioning. However, the results obtained in this step 
may not always be within the desired ranges. For this reason, an 
additional step was needed in the method. In this step, if the esti-
mation is not within the desired range, the cr parameter shown 
in Table 1 is changed systematically. cr value is assigned, starting 
from zero, and it is checked whether the estimated value is within 
the desired range. The cr value is increased until the estimation is 
within the desired range.

2. Case Study

A coal field in the Türkiye-Thrace region was used for the ap-
plication. A total of 128 vertical drillings with a length of 38 326 m 
were made in the field. The total thickness of coal cut from these 
drillings is 876 m. The coal seams are relatively thin, and the thick-
ness of the coal seam is 6.5 m. The drillings made are shown in 
Figure 1.
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Data were composited at 1 m length for estimation with krig-
ing and conditioned radial basis function. Summary statistics of 
the obtained data are shown in Table 2. Since the average distance 
between the data varies considerably, calculating the mean of the 
data directly may lead to erroneous inferences (Stein,2012, Tercan 
2004). For this reason, declustered means of the data were calcu-
lated while calculating the declustered average, the existing area 
was divided into 1000 m x 1000 m intervals, and the data falling 
within these intervals was redefined according to the number of 
data whose weights fell on the average.

Table 2. Summary statistics of the composites 

Number 
of data

Minimum Average Declustered 
Mean

Median Maximum Standard 
deviation

270 41 1428 1544 1456 3116 483

As can be seen in Table 2, the mean value and the declustered 
mean value are relatively different from each other. This is because 
the average distance between the data differs significantly. In this 
case, the mean for declustered data is higher than raw data. This 
means more frequent drilling in areas with low calorific value is 
made. 

2.1 Estimation with Kriging 

For estimation by kriging, firstly, the experimental variogram 
was calculated. Data frequency and spread did not allow for the 
computation of consistent directional variograms. For this reason, 
the experimental variogram was calculated and fitted as isotropic 
in the horizontal direction. The fitted variogram model is given in 
Table 3.

Table 3. Fitted variogram model

C0 C a (Horizontal, m) a(Vertical, m) 
83 000 150 000 1100 4

The cross-validation method was used to determine the us-
ability of the adapted variogram in estimations. Cross validation 
results are shown in Table 4.

Table 4. Cross validation results

Mean -10.23
Variance 255060
Average kriging variance 238269
Percentage of errors within two std. deviation 94.56

While the mean error was determined as low as -10 kCal/kg, 
the variance and mean kriging variances were close to each other. 
Also, Percentage of errors within two standard deviations, was a 
high value of 94.56%. Taking all these conditions into account, the 
cross-validation results show the usability of the variogram model 
for predictions. Estimation was performed using the fitted vario-
gram model and summary statistics on the estimation results ob-
tained Table 5 and the estimation map is given in Figure 4.

Table 5. Summary statistics of kriging estimate

Minimum (kCal/kg) 518
Median (kCal/kg) 1506
Average (kCal/kg) 1499
Maximum (kCal/kg) 2350
Standard deviation 134.57

Figure 4. Kriging estimate of roof of the coal model

As can be seen in Table 5, the estimations using kriging were 
found between 518 and 2350 kCal/kg with an average of 1499 
kCal/kg. In addition, in Figure 4, consistent with the calorific value 
summary statistics, the coal ceiling is with relatively low variabili-
ty in the range of 1000 to 2000 kCal/kg.

2.2 Estimation with Conditioned Radial Basis Function (CRBF)

Estimation with the conditioned radial basis function is made 
using the steps described in the relevant section. The same block 
model and composites were used as in kriging. There is currently 
no program for estimation with conditioned radial basis functions. 
For this reason, the algorithm was written in MATLAB environ-
ment and a program that made predictions was written. 

As seen in Table 6, there is more than one alternative that can 
be used as a kernel function in a radial basis function. It is neces-
sary to determine which of these alternatives is to be used. After 
determining the kernel function to be used, parameter optimiza-
tion of the relevant kernel function should be done. In the opti-
mization of the kernel function and parameter, many alternatives 
have been tried and the option that produces the average closest 
to the average of the composites from these alternatives has been 
preferred. The estimation range was between 40 and 3000 kCal/
kg, considering the lowest and highest values of the composite val-
ues. As a result, estimation was performed using the MATLAB code 
written to perform the estimation. Gaussian kernel function distri-
bution parameter is preferred as 1.9 in estimation. The statistics 
of the obtained results are given in Table 6 and the estimation map 
is shown in Figure 5.
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Table 6. Summary statistics of CRBF estimate 

Minimum (kCal/kg) 40

Median (kCal/kg) 1570
Average (kCal/kg) 1542
Maximum (kCal/kg) 3001
Standard deviation 500.47

Figure 5. CRBF estimate of roof of the coal model

In Table 6, coal is estimated between 40 and 3001 kCal/kg with 
an average of 1542 kCal/kg. In addition, the standard deviation of 
the estimation is 500.47. Coal quality variability is relatively high-
er, and high-quality coal and low-quality coal are adjacent to each 
other in the south of the field.

In order to compare estimation results, histograms of the com-
posites and estimation results are given in Figure 6.  
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As seen from the Figure 6 kriging estimates are centered be-
tween 1500 and 2000 kCal/kg values while it is expected due to 
the well-known smoothing property of the method. CRBF esti-
mates are close to composite values while deviation exists at calo-
rific values between 2250 and 2750 kCal/kg. To compare summa-
ry statistics of the estimate’s percent of deviations from composite 

statistics are are given in Table 7 while percentages of deviations 
are calculated as in Eq. 8. 
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Table 7. Deviation of summary statistics of estimates from composite sum-
mary statistics

Deviation CRBF Kriging
Minimum (%) -2.44 1163.41
Median (%) 4.28 1.37
Average (%) 7.83 3.43
Maximum (%) -3.74 -24.60
Standard deviation(%) 3.50 -72.17

As seen from Table 7 deviation of the CRBF estimates are low-
er in minimum, maximum and standard deviation while kriging 
estimates produced closer estimates to composites in terms of 
median and average. The deviation of the kriging is dramatic in 
minimum and standard deviation which is result of smoothing. 

3. Results and Discussions 

In this study, Conditioned Radial Basis Function, and kriging 
methods for spatial estimation of quality are used and compared. 
For the purpose of comparison, a coal field in the Türkiye-Thrace 
region has been used. The spatial distribution of the coal calorific 
value was estimated by both methods. Experimental variograms 
were calculated and modeled for estimation by kriging. The exper-
imental variogram shows that the average calorific value continu-
ity in the field is approximately 1100 m and 4 m in horizontal and 
vertical directions respectively. Estimates are also made with the 
CRBF for comparison purposes. The Gaussian kernel function was 
used, and the cr was determined as 1.9.

It was observed that the average of the CRBF estimates were 
closer to composite estimates. In addition, the estimation interval 
of the CRBF is closer to the raw data. From this point of view, it 
has been observed that CRBF produces more desirable results in 
terms of estimation. However, the minimum value obtained with 
CRBF is 1 kCal/kg lower than the composite minimum values. Al-
though this value may seem insignificant, it may indicate one of 
the flaws of estimation with CRBF. Because, in general, estimators 
are expected to interpolate, but as it can be seen, CRBF estimated 
a value outside the range of composites, albeit at an insignificant 
level. The highest estimate values   obtained by both methods were 
lower than the composite estimates. 

Estimation steps with both methods are similar while only at-
tachment of the weights associated with the sampling points are 
only the difference. In estimation with kriging variogram values 
were used while in CRBF kernel function used instead. No vario-
gram modelling is required in estimation with CRBF instead esti-
mation of cr value is required. Results show that CRBF can be used 
as an alternative to kriging while technique can be used to check 
the estimations with kriging. 

The parameters used in the method were determined by tri-
al-and-error method. This approach is troublesome and the ker-
nel function to be used may differ depending on the person using 
the method. Similarly, the parameters of the kernel function were 
determined by trial-and-error method. For this reason, it is nec-
essary to develop standard methods for the determination of the 
kernel function and its related parameter. The method has been 
tried for the first time in the coal field. Testing the method with 
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other coal quality variables is important in terms of testing the us-
ability of the method.
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